ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ

Федеральное государственное бюджетное учреждение «Главная геофизическая обсерватория им. А. И. Воейкова» (ФГБУ «ГГО»)

МЕТОДИЧЕСКОЕ ПИСЬМО

ОБЗОР СОСТОЯНИЯ РАБОТ ПО НАБЛЮДЕНИЮ ЗА ХИМИЧЕСКИМ СОСТАВОМ И КИСЛОТНОСТЬЮ АТМОСФЕРНЫХ ОСАДКОВ в 2020 г.

САНКТ-ПЕТЕРБУРГ 2021 г.

Методическое письмо обобщает результаты деятельности сети наблюдений за химическим составом и кислотностью атмосферных осадков Росгидромета за 2020 год. Письмо составлено на основе сведений, представленных УГМС и ЦГМС (ЦМС) в виде «Обзоров оперативно-производственной деятельности сети мониторинга химического состава и кислотности атмосферных осадков» за 2020 год. Также обобщены данные атмосферных измерений химического состава осадков, сведения ПО проверке градуировочных графиков для определения в пробах концентраций веществ, материалы результатов внутреннего внешнего контроля, регулярно анализа И проводимых в лабораториях УГМС.

В письме содержатся рекомендации по улучшению деятельности сети мониторинга с целью повышения качества информации о кислотности и химическом составе атмосферных осадков.

Настоящее методическое письмо подготовлено специалистами ФГБУ «ГГО»: начальником информационно-аналитического центра мониторинга загрязнения атмосферы (ИАЦ ЗА) А. И. Полищук, заместителем начальника ИАЦ ЗА Н. А. Першиной, научным сотрудником М. Т. Павловой, научным сотрудником Е. С. Семенец, аэрохимиком Е. В. Грановской.

[©] Федеральное государственное бюджетное учреждение «Главная геофизическая обсерватория им. А.И. Воейкова» Росгидромета, 2021 г.

Содержание

Введе	ние	4								
1.	Анализ работы сети станций по наблюдению за кислотностью и химическим									
	составом атмосферных осадков.	6								
1.1	Краткий обзор состояния сети мониторинга за 2020 год	6								
1.1.1	Наблюдения за химическим составом осадков	6								
1.1.2	Наблюдения за кислотностью осадков	6								
1.1.3	Наблюдения за удельной электрической проводимостью (УЭП)	7								
1.1.4 Метеорологические наблюдения при отборе проб осадков										
1.2	О работе сети станций мониторинга кислотности и химического									
	состава атмосферных осадков в 2020 году	7								
2.	Анализ состояния работ в аналитических лабораториях	20								
2.1	Химический анализ атмосферных осадков	20								
2.2	Внутренний контроль точности результатов измерений	31								
2.3	Внешний контроль точности результатов измерений	33								
2.4	Рекомендации по построению градуировочных графиков	38								
Вывод	ы и рекомендации	40								
Прило	жение 1. Анкета: сведения о станциях по наблюдениям за химическим									
состав	ом и кислотностью атмосферных осадков	44								
Прило	жение 2. Инструкция по отбору проб атмосферных осадков	46								
Прило	жение 3. Основные принципы измерения рН в пробах атмосферных									
осадко)B	51								
Прило	жение 4. Определение кислотности-щелочности	54								
Прило	жение 5. Перечень ионселективных электродов	55								
Прило	жение 6. Инструкция для мытья посуды для химического анализа									
атмосо	рерных осадков	56								
Прило	жение 7. Рекомендация по исключению применения портативных									
прибо	ров	57								
Прило	жение 8. Рекомендации по использованию данных о кислотности									
атмосо	рерных осадков	58								

ВВЕДЕНИЕ

Регулярные наблюдения за химическим составом и кислотностью (ХСОиК) атмосферных осадков на территории РФ были организованы в конце 1950-х гг. Наблюдения за кислотностью (К) в суточных и единичных пробах, отобранных как отдельные осадки, начались с 1989 года.

В 2020 году наблюдения за химическим составом и кислотностью атмосферных осадков проводились на **222** станциях, из них: на **76** станциях — за химическим составом и кислотностью; на **73** — только за кислотностью; и на **73** — только за химическим составом. На рисунке 1 приведена диаграмма развития сети с 1991 года по 2020 г.

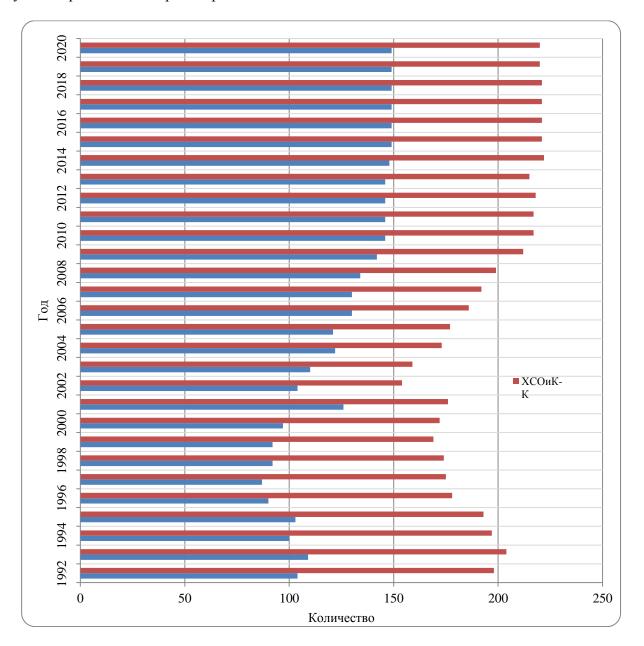


Рисунок 1 — Развитие сети наблюдений за кислотностью и химическим составом атмосферных осадков, 1992-2020 гг.

XCOиК – Количество станций, отбирающих пробы атмосферных осадков на химический состав для отправки в лаборатории и измеряющих кислотность в единичных, суточных пробах сразу после отбора проб непосредственно на станциях.

XCOиK-К – общее количество станций, отбирающих пробы атмосферных осадков на химический анализ для отправки в лаборатории и измеряющих кислотность в единичных, суточных пробах сразу после отбора непосредственно на станциях, и станций, только измеряющих кислотность сразу после отбора проб непосредственно на станциях

Данные сети мониторинга кислотности и химического состава атмосферных осадков используются для установления общего уровня атмосферного загрязнения, выяснения его динамики, оценки переноса веществ в атмосфере, определения сезонной и суммарной нагрузки содержащихся в осадках химических соединений на подстилающую поверхность. При этом примеси, содержащиеся в осадках, рассматриваются как индикатор загрязнения определенного слоя атмосферы. Это приобретает особое значение для тех территорий, на которых другие виды наблюдений за загрязнением атмосферы не проводятся.

Мониторинг химического состава атмосферных осадков состоит из двух фаз: отбор проб и лабораторный анализ.

Первая фаза – сбор проб осадков (твердых, смешанных и жидких) в специальное пробоотборное устройство. Количество осадков записывается по показаниям национального осадкосборника. Пробы до отправки в лабораторию хранятся на станции в прохладном месте. Соблюдение правил отбора, хранения и отправки проб в лабораторию является одним из важнейших факторов обеспечения достоверности информации о составе атмосферных осадков.

Вторая фаза начинается, когда проба доставлена в лабораторию. Анализ проб атмосферных осадков в 2020 г, отбираемых для определения их макросостава, выполнялся в 11 региональных химических лабораториях.

В лабораториях определялись 9 главных ионов — макрокомпонентов (сульфаты, хлориды, нитраты, гидрокарбонаты или кислотность, ионы аммония, натрия, калия, кальция, магния), а также величины рН, удельной электропроводности и общей минерализации. Этот перечень соответствует программе, принятой Глобальной службой атмосферы (ГСА) ВМО.

С целью обеспечения качества химического анализа во всех лабораториях периодически выполняется внутренний контроль. ФГБУ «ГГО» проводит и внешний контроль лабораторных измерений путем рассылки образца контроля. Помимо этого, три из одиннадцати химических лабораторий регулярно участвуют в международных сравнениях, организуемых Мировым центром качества ГСА ВМО.

В настоящее время в химических лабораториях, в основном, используются единые методы анализа загрязняющих веществ по РД 52.04.186-89, РД 52.18.595-89, РД 52.04.167-2018.

Данные о химическом составе атмосферных осадков публикуются в регулярных изданиях. В обобщенном виде информация по химическому составу и кислотности атмосферных осадков ежегодно представляется в Обзор состояния и загрязнения окружающей среды в Российской Федерации и Обзор фонового состояния природной среды на территории стран СНГ, подготавливаемые несколькими НИУ Росгидромета, а также в «Ежегодник. Состояние загрязнения атмосферы в городах на территории России». Обзоры публикуются на сайте Росгидромета meteorf.ru. На основе анализа данных многолетних наблюдений подготавливаются научные публикации.

Во многих УГМС аналитическая информация об уровне загрязнения атмосферных осадков используется при оценке экологического состояния региона, подготовке справок и обзоров.

В 2014 году Росгидрометом издан Приказ от 18.07.2014 г. № 421 «О развитии наблюдений за химическим составом и кислотностью атмосферных осадков», который опубликован на сайте Росгидромета meteorf.ru.

В 2019 году Приказом Росгидромета от 20.08.2019 № 398 с 1 октября 2019 года введен в действие РД 52.04.878-2019 «Отбор проб при наблюдениях за химическим составом атмосферных осадков», утвержденный руководителем Росгидромета 12 июля 2019 года. В течение 2019–2020 годов все УГМС освоили и внедрили в оперативную практику РД 52.04.878-2019.

1 АНАЛИЗ РАБОТЫ СЕТИ СТАНЦИЙ ПО НАБЛЮДЕНИЮ ЗА КИСЛОТНОСТЬЮ И ХИМИЧЕСКИМ СОСТАВОМ АТМОСФЕРНЫХ ОСАДКОВ

1.1. Краткий обзор состояния сети мониторинга за 2020 год

Материалы настоящего Методического письма подготовлены на основе ежегодно представляемых из УГМС «сведений о состоянии работ по наблюдениям за химическим составом и кислотности атмосферных осадков на территории УГМС». За 2020 год информация своевременно поступила не из всех УГМС. Материалы УГМС, как правило, оформляются в виде ответов на «перечень вопросов», помещенных в Приложении 1. Методическое письмо включает анализ материалов внешнего и внутреннего контроля, регулярно выполняемых в лабораториях УГМС.

В разделе 1.2 и далее использованы следующие обозначения проб осадков:

X-M	химия осадков в пробах за месяц;
х-н	химия осадков в пробах за неделю;
х-д	химия осадков в пробах за декаду;
x-c	химия осадков в пробах за сутки;
х-ед	химия осадков в пробах за отдельный дождь (снег);
к-с	кислотность в пробах за сутки;
к-ед	кислотность в пробах за отдельный дождь (снег);
э-пр-с	удельная электрическая проводимость в суточных пробах.

1.1.1 Наблюдения за химическим составом осадков

Во всех УГМС, кроме ФГБУ «Башкирское УГМС», ФГБУ «Уральское УГМС» и ФГБУ «Центральное УГМС», в 2020 году изменений в структуре сети отбора проб атмосферных осадков не произошло. По-прежнему, не измеряли кислотность на станции Зилаир (ФГБУ «Башкирское УГМС»). На станции Нижний Тагил (ФГБУ «Уральское УГМС») возобновили, а на станции Рязань (ФГБУ «Центральное УГМС») начали измерение кислотности с 2020 года.

Недельный отбор в 2020 г. осуществляли на 12-ти станциях (Воейково, Памятная, Приокско-Террасный БЗ, Кавказский БЗ, Воронежский БЗ, Сихотэ-Алинский БЗ, Таксимо, Туруханск, Усть-Вымь, Хамар-Дабан, Шаджатмаз, Яйлю), единичные пробы – в Мурманске, суточные – на Приморской. Декадные пробы отбирались на станции Ясная Поляна.

На 8-ми из 10-ти действующих российских станциях ГСА ВМО: Воронежский БЗ, Кавказский БЗ, Памятная, Приокско-Террасный БЗ, Сихотэ-Алинский БЗ, Туруханск, Усть-Вымь, Шаджатмаз проводился недельный отбор осадков, на станциях Тикси и Хужир отбирались пробы за месяц.

На остальных станциях осуществлялся месячный отбор проб.

В 2020 году наблюдения за химическим составом осадков выполнялись на 149 станциях.

1.1.2 Наблюдения за кислотностью осадков

В течение 2020 года с целью уточнения ситуации с сетью наблюдений за кислотностью атмосферных осадков специалистами $\Phi \Gamma \delta V$ « $\Gamma \Gamma O$ » был продолжен анализ полученных со станций материалов.

В 2020 году на всех станциях определение величины рН проводилось с применением специальных приборов (рН-метров) в единичных или суточных пробах атмосферных осадков. В РД 52.24.878-19 рекомендован метод измерения величины рН с электродной парой – измерительным и проточным электродами. Дополнительное обоснование приведено в Приложении 3. Применение появившихся новых приборов возможно, если они имеют аналогичные характеристики.

В целом, почти во всех УГМС была проведена значительная работа по оснащению сети наблюдений за кислотностью осадков современными надежными приборами.

Не все имеющиеся результаты определения рН, полученные на сети кислотности осадков, могут быть рекомендованы к использованию. Сомнительными оказались сведения с повторяющимися одними и теми же значениями рН. В основном это обнаруживается в данных тех станций, которые для измерения кислотности использовали рН-метры с комбинированным электродом и портативные типа «Checker», «HANNA» ИТ-1101. Браковались случаи с грубыми нарушениями при отборе проб осадков, на которые было указано ранее в Методических письмах, выпускаемых ФГБУ «ГГО».

В 2020 г. наблюдения за кислотностью атмосферных осадков выполнялись на 149 станциях.

В Методических письмах за предыдущие годы было рекомендовано в целях экономии почтовых расходов УГМС и повышения оперативности обработки и архивации данных по кислотности присылать в Φ ГБУ «ГГО» информацию в электронном виде по электронной почте.

Начиная с 2019 г. все станции выполняют данные рекомендации.

1.1.3 Наблюдения за удельной электрической проводимостью (УЭП)

В последние годы на станциях, выполняющих наблюдения за кислотностью, по рекомендации $\Phi\Gamma$ БУ « $\Gamma\Gamma$ О» проводят измерения электропроводности в отобранных пробах осадков. В 2020 году такие наблюдения выполнены на 27 станциях.

1.1.4 Метеорологические наблюдения при отборе проб осадков

Специалисты ФГБУ «ГГО» продолжили анализ сопроводительной метеорологической информации за последние годы.

При отборе проб атмосферных осадков на XCO и кислотность выполняется комплекс метеорологических наблюдений.

Определяются следующие метеорологические параметры: направление и скорость ветра, температура, относительная влажность, а также вид осадков, количество и формы облаков, из которых осадки выпадают, отмечаются особые явления, если они наблюдались перед отбором или во время отбора пробы.

Проводится измерение количества осадков за время отбора.

Результаты метеорологических наблюдений и измерений величины рН вносятся в таблицы ТНХО по форме, приведенной в РД 52.04.878-2019.

1.2 О работе сети станций мониторинга химического состава и кислотности атмосферных осадков

Специалисты УГМС выполнили работы по подготовке и представлению в «ФГБУ «ГГО» сведений об оперативно-производственной деятельности сети мониторинга химического состава и кислотности атмосферных осадков. В материалах некоторых УГМС не всегда полностью отражено действительное состояние сети ХСОиК, что выясняется при проведении инспекций и анкетного опроса со стороны ФГБУ «ГГО».

При подготовке материалов за год не все УГМС четко и полностью отвечают на вопросы, предложенные макетом представления сведений к Обзору. В Приложении 1 предыдущих Методических писем был приведен перечень вопросов к Обзору деятельности сети химического состава и кислотности атмосферных осадков, в который внесены некоторые дополнения, способствующие более полному представлению материала в Обзор.

В целом, по сравнению с 2019 годом, состояние сети мониторинга ХСОиК заметно улучшилось. В ряде УГМС подготовлены и выполнены Планы мероприятий по устранению

недочетов, отмеченных в Методических письмах за предыдущие годы и в замечаниях специалистов ФГБУ «ГГО», сформулированных в ходе методических инспекций. На многих станциях заменены пробоотборные устройства на более удобные, также частично заменены приборы для измерения величины рН, рекомендованные в предыдущих Методических письмах. Тем не менее, на сети еще сохранились отклонения от правил проведения работ, особенно касающиеся отбора проб атмосферных осадков, их хранения и измерений величины рН.

Нарушение правил отбора проб, их хранения и транспортировки, а также измерения рН приводит к тому, что результаты проделанной работы не могут быть достоверными и предоставляться потребителям. Именно поэтому в настоящем письме в Приложении 2 приводится подробная Инструкция по отбору проб атмосферных осадков. Инструкцию следует распространить на все станции, выполняющие отбор проб атмосферных осадков для химического анализа и измерения величины рН и регулярно проверять выполнение положений Инструкции (РД 52.04.878-2019).

Башкирское УГМС

Наблюдения проводились на 5 станциях

Зилаир (х-м) Туймазы (к-с, э-пр-с) Стерлитамак (х-м, к-с)

Уфа (x-м, к-с, э-пр) Чишмы (x-м, к-с)

На всех станциях установлено по одному полиэтиленовому ведру HDPE фирмы Vitlab.

На станции Зилаир в 2020 году не проводились суточные измерения показаний рН, так как прибор вышел из строя в 2017 году и ремонту не подлежит. Таким образом, со стороны УГМС нарушено исполнение Приказа от 18.07.2014 г № 421. На станции Стерлитамак суточные пробы, отобранные в выходные, хранятся в холодильнике до будничных дней для измерения рН в лаборатории.

Пробы четырех станций анализировались в лаборатории Башкирского УГМС, результаты анализа регулярно направлялись в ФГБУ «ГГО» электронной почтой.

Инспекций в 2020 году не было.

Рекомендуется:

- приобрести рН метры для станции Стерлитамак.
- станции Стерлитамак и Чишмы, выполняющие программу наблюдений за химическим составом и кислотностью осадков, оснастить вторым ведром для раздельного отбора проб (+2 запасных);
 - проводить регулярные инспекции всех станций.

Верхне-Волжское УГМС

Наблюдения проводились на 4 станциях.

 Верхошижемье (х-м)
 Морки (х-м)

 Нижний Новгород (х-м, к-с,)
 Саранск (х-м)

На станции Нижний Новгород выполняются наблюдения за кислотностью в суточных пробах осадков на стационарном рН-метре «Анион 4120». На станции установлены 2 полиэтиленовых ведра HDPE фирмы Vitlab.

На станции Верхошижемье в период с 21 часа до 5 часов следующих суток нет контроля над сбором осадков, ведро между осадками не закрывается крышкой, так как ночью метеостанция не работает.

В лаборатории ФГБУ «Верхне-Волжское УГМС» отсутствует пламенный фотометр, поэтому не определяется содержание калия и натрия в пробах осадков, что не позволяет выполную программу наблюдений за XCO.

Результаты анализа проб атмосферных осадков направлялись в ФГБУ «ГГО» электронной почтой.

В 2020 г. в связи с ограничениями, связанными с распространением коронавируса в Российской Федерации инспекции наблюдательной сети за химическим составом и кислотностью атмосферных осадков не проводились.

Информация о химическом составе и кислотности атмосферных осадков используется при оценке экологического состояния регионов, при подготовке справок и обзоров.

Рекомендуется:

- регулярно инспектировать работу всех станций по отбору проб атмосферных осадков;
- принять меры к оснащению ЛФХМ ЦМС пламенным фотометром с целью выполнения полной программы измерений XCO.

Дальневосточное УГМС

Наблюдения проводились на 18 станциях.

 Аян (х-м)
 Бикин (к-ед)
 Биробиджан (к-ед)

 Бичевая (х-м)
 Благовещенск (к-ед, э-пр)
 Вяземская (к-ед)

 Зея (к-ед)
 Комсомольск-на-Амуре (к-ед)
 Константиновка (х-м)

 Ленинское (к-ед)
 Николаевск-на-Амуре (к-ед)
 Советская Гавань (к-ед)

 Сутур (х-м, к-ед)
 Троицкое (к-ед)
 Тында (к-ед)

 Хабаровск (к-ед)
 Хор (к-с)
 Чегдомын (к-ед)

УГМС предприняло меры по улучшению работ сети мониторинга химического состава и кислотности атмосферных осадков. Но не решены проблемы с регулярной поверкой приборов для измерения рН на трех станциях, что ведет к снижению достоверности результатов.

В 2020 году не поверены приборы для определения рН на станциях Вяземская, Троицкое, Хор.

На станции Биробиджан pH дистиллированной воды 5,1, что не ниже допустимого значения ГОСТ 6709-72.

На станции Хор пробоотборник не закрывается крышкой в перерывах между осадками.

На станции Троицкое промывают пробоотборник **содой**, что является **нарушением** РД 52.04.878-2019.

Пробы осадков четырех станций регулярно отправляются в лабораторию ФГБУ «Приморское УГМС» для химического анализа.

В 2020 г. проведены инспекции 6 станций: Биробиджан, Благовещенск, Комсомольск-на-Амуре, Николаевск-на-Амуре, Хабаровск, Тында.

Рекомендуется:

- регулярно выполнять инспектирование всех станций;
- обеспечить ежегодную поверку приборов для измерения рН на всех станциях.

Забайкальское УГМС

Наблюдения проводились на 8 станциях.

 Дульдурга (х-м)
 Могоча (х-м)
 Нерчинск (х-м)

 Петровский завод (х-м, к-с)
 Романовка (х-м, к-с)
 Таксимо (х-н)

Улан-Удэ $(x-м, \kappa-c)$ Чита $(x-м, \kappa-c)$

На станции Романовка не указана величина рН дистиллированной воды.

Величина рН измеряется в суточных пробах на 4-х станциях.

Месячные пробы осадков всех 8-ми станций регулярно отправлялись в Саянскую КЛМС ФГБУ «Иркутского УГМС» для проведения химического анализа.

В 2020 году проинспектирована работа двух станций: Петровский завод, Чита.

Рекомендуется:

- регулярно выполнять инспектирование всех станций.

Западно-Сибирское УГМС

Наблюдения проводились на 18 станциях.

Барабинск (х-м) Барнаул (к-с, э-пр) Бийск (к-с) Искитим (х-м, к-с) Кемерово (к-с) Крапивино (к-с) Кузедеево (х-м) Новокузнецк (к-с) Новосибирск (к-с) Мариинск (х-м) Огурцово (х-м) Славгород (х-м) Средний Васюган (х-м) Тогул (х-м) Томск (к-с) Топки (к-с) Центральный Рудник (к-с) Яйлю (х-н)

В 2020 году на **8-ми** станциях: Бийск, Искитим, Кемерово, Крапивино, Новокузнецк, Новосибирск, Томск, Центральный Рудник измерения **рН** выполнялись на **приборах, не имеющих поверки**.

Пробы 8-ми станций отправлялись на химический анализ (XCO) в Саянскую КЛМС ФГБУ «Иркутское УГМС».

В 2020 году проинспектировано 8 станций: Барнаул, Бийск, Крапивино, Мариинск, Новосибирск, Топки, Томск, Центральный Рудник.

Рекомендуется:

- регулярно выполнять инспектирование всех станций;
- ежегодно выполнять поверку приборов измерения рН на всех станциях;
- станцию Искитим, выполняющую программу наблюдений за химическим составом и кислотностью осадков, оснастить двумя запасными ведрами для раздельного отбора проб.

Иркутское УГМС

Наблюдения проводились на 11 станциях.

Байкальск (х-м, к-с, э-пр) Братск (х-м, к-с) Большое Голоустное (х-м)

Зима (к-с, э-пр) Иркутск (х-м, к-с, э-пр) Исток Ангары (х-м)

Преображенка (х-м) Саянск (х-м, к-с, э-пр) Хужир (х-м)

Хамар-Дабан (х-н) Черемхово (х-м)

На станции Зима измерение электропроводности с марта 2020г. не проводится.

С 2020 года на станциях Байкальск и Иркутск начали измерять электропроводность.

На станции из-за проблемы с доставкой на станции Преображенка нет дистиллированной воды, для ополаскивания берется прокипяченная и отстоянная вода, что является нарушением РД 52.04.878-2019.

Пробы с 10-ти станций анализировались на химический состав в Саянской КЛМС ФГБУ «Иркутское УГМС».

В 2020 году инспекции станций не проводились.

Рекомендуется:

- регулярно выполнять инспектирование всех станций;
- решить проблему с доставкой дистиллированной воды на станцию Преображенка;
- в годовом обзоре сообщать об измерениях электропроводности на станциях.

Камчатское УГМС

Наблюдения проводились на 1-ой станции.

Петропавловск-Камчатский (х-м, к-с).

Измерение рН осадков проводится на станции.

Пробы анализируются в химической лаборатории ФГБУ «Приморское УГМС».

Рекомендуется:

 приобрести два запасных ведра для раздельного отбора проб за химическим составом и кислотностью осадков.

Колымское УГМС

Наблюдения проводились на 4 станциях.

Магадан (к-с) Палатка (х-м, к-с) Сусуман (к-с) Среднекан (к-с)

Измерение величины рН оперативно выполняется на всех 4-х станциях.

Пробы со станции Палатка отправлялись на химический анализ в лабораторию ФГБУ «Приморское УГМС».

В 2020 году выполнены инспекции 2-х станций: Магадан, Палатка.

В сентябре 2020 года специалистами ОМИХСА ФГБУ «ГГО» проведены плановые инспекции по наблюдениям за химическим составом и кислотностью атмосферных осадков станций ОГМС Магадан и М-2 Палатка. Качество работ по наблюдениям за химическим составом и кислотностью признано удовлетворительным.

Рекомендуется:

- проводить инспекции всех станций.

Крымское УГМС

Наблюдения проводились на 8-ми станциях.

Ишунь (к-ед) Карадаг (х-м, к-ед) Нижнегорский (х-м, к-ед)

Никитский Сад (х-м, к-ед) Опасное (Керчь) (к-ед) Симферополь (к-ед)

Ялта (к-ед) Симферополь АЭ (к-ед)

УГМС приняло все меры для улучшения работ по мониторингу ХСОиК и устранению недостатков, перечисленных в Методических письмах за предыдущие годы.

В Симферополе с 2017 г измерение рН проводятся на метеоплощадке и в аэропорту.

Пробы атмосферных осадков со станций Карадаг, Никитский Сад и Нижнегорский регулярно присылались на химический анализ в лабораторию ФГБУ «ГГО».

Инспекции всех станций проводятся регулярно.

Информация о химическом составе и кислотности атмосферных осадков используется при оценке экологического состояния региона при подготовке справок и обзоров.

Рекомендуется:

- приобрести запасное ведро для станции Опасное (Керчь);
- в годовом обзоре сообщать сведения об измерениях рН на обеих станциях Симферополя.

Мурманское УГМС

Наблюдения проводились на 11 станциях.

 Апатиты (к-ед)
 Зареченск (х-м, к-ед)
 Кандалакша (к-с)

 Кола (к-с)
 Краснощелье (х-м, к-ед)
 Мончегорск (к-ед)

 Мурманск (х-ед, к-ед, э-пр)
 Никель (х-м, к-с)
 Падун (х-м, к-с)

Перевал (к-ед) Янискоски (х-м, к-с)

Единичные пробы со станции Мурманск и месячные пробы со всех станций анализировались в лаборатории ФГБУ «Мурманское УГМС». Данные отправлялись в ФГБУ «ГГО» электронной почтой. По данным из анкет не были поверены в 2020 году рН-метры на станциях Зареченск, Кола, Краснощедье, Мончегорск, Никель, Янискоки.

В 2020 г. специалистами ЦМС ФГБУ «Мурманское УГМС» проведена плановая инспекция станции Кола.

Рекомендуется:

- приобрести запасные ведра для станций: Кандалакша (1 шт.), Зареченск (2 шт.);
- заменить ведра на станциях Краснощелье и Мончегорск;
- регулярно проводить инспекцию всех станций.

Обь-Иртышское УГМС

Наблюдения проводились на 6 станциях.

Омск (х-м, к-с, э-пр) Салехард (к-с, э-пр) Тюмень (х-м, к-с, э-пр)

Ханты-Мансийск (х-м, к-с, э-пр) Уренгой (х-м) Шаим (х-м)

Пробы 5-ти станций регулярно отправляются на химический анализ в Саянскую КЛМС ФГБУ «Иркутское УГМС».

.В 2020 году проведены инспекции всех 6-ти станций.

Рекомендуется:

- по возможности заменить на станции Салехард комбинированный электрод на электродную пару;
 - заменить ведра на станциях Салехард (2 шт.) и Уренгой (2шт.).

Приволжское УГМС

Наблюдения проводились на 9 станциях.

 Кувандык (к-ед)
 Оренбург (х-м, к-ед)
 Орск (к-ед)

 Пенза (х-м, к-ед)
 Саратов (х-м, к-ед)
 Самара (к-ед)

 Сызрань (к-ед)
 Тольятти (х-м, к-ед)
 Ульяновск (к-с)

Пробы 4-х станций регулярно отправлялись в лабораторию ФГБУ «УГМС Республики Татарстан».

В течение 2020 г. проведены инспекции всех 9-ти станций.

Информация о химическом составе и кислотности атмосферных осадков используется при оценке экологического состояния региона при подготовке справок и обзоров.

Рекомендуется:

- на станции Саратов использовать ведра для отбора проб твердых осадков вместо изношенных кювет;
 - заменить ведра на станциях: Сызрань (2 шт.), Тольятти (2 шт.);
- по возможности заменить на станциях Тольятти, Сызрань и Саратов комбинированный электрод на электродную пару.

Приморское УГМС

Наблюдения проводились на 6 станциях.

Партизанск (х-м) Садгород (х-м, к-с) Халкидон (х-м)

Сихотэ-Алинский БЗ (х-н) Тимирязевский (х-м) Приморская (х-с, к-с, э-пр)

Пробы 6-ти станций анализируются в лаборатории ФГБУ «Приморское УГМС». Результаты анализа отправляются в ФГБУ «ГГО» электронной почтой.

Ежегодно проводятся инспекции только двух станций Приморская и Садгород. Остальные станции не инспектируются в течение нескольких лет.

Рекомендуется:

- на станции Приморская заменить эмалированное ведро на полипропиленовое с крышкой и оснастить станцию вторым ведром для раздельного отбора проб на химический анализ и на измерения кислотности в суточных пробах (+ 2 запасных);
 - проводить регулярные инспекции всех станций.

Сахалинское УГМС

Наблюдения проводились на 4 станциях.

Александровск (х-м, к-с, э-пр) Поронайск (х-м, к-с, э-пр)

Южно-Сахалинск (х-м, к-с, э-пр) Оха (к-с, э-пр)

С 2020 года на станции Поронайск начали измерять электропроводность.

Пробы осадков с 3-х станций анализируются в лаборатории ФГБУ «Сахалинское УГМС».

Результаты анализа направляются в ФГБУ «ГГО» электронной почтой.

Инспекции в 2020 г. не проводились.

Рекомендуется:

- заменить эмалированное ведро на станции Оха на полипропиленовое;

- по возможности заменить на станциях Оха и Александровск-Сахалинский комбинированный электрод на электродную пару;
 - проводить регулярные инспекции всех станций.

Северное УГМС

Наблюдения проводились на 16 станциях.

Амдерма (к-с)Архангельск (х-м, к-с)Белозерск (х-м)Б. Брусовица (х-м)Вологда (х-м, к-с)Диксон (х-м)Мудьюг (х-м)Нарьян-Мар (х-м)Онега (х-м)

 Северодвинск (х-м, к-с)
 Сура (х-м)
 Сыктывкар (х-м, к-с)

 Череповец (х-м, к-с)
 Троицко-Печорск (х-м)
 Усть-Вымь (х-н)

Ухта (х-м, к-с)

Лаборатория Архангельского ЦГМС анализирует пробы осадков, отобранные на станциях Северного УГМС. Результаты анализа регулярно передаются в ФГБУ «ГГО» электронной почтой. Пробы станции Усть-Вымь (фоновой ГСА ВМО) отсылаются на химический анализ в лабораторию ФГБУ «ГГО».

В 2020 году была проведена инспекция одной станции Нарьян-Мар.

Рекомендуется:

- оснастить станцию Северодвинск вторым ведром для раздельного отбора проб на химический анализ и на измерения кислотности в суточных пробах (+ 2 запасных);
 - оснастить запасными ведрами станции: Болотная Брусовица, Мудьюг;
- обновить ведра на станциях: Амдерма, Архангельск, Белозерск, Вологда, Диксон, Онега, Сура, Сыктывкар, Троицко-Печорск, Череповец;
- по возможности заменить на станциях: Амдерма, Вологда, Северодвинск, Ухта, Череповец комбинированный электрод на электродную пару;
 - проводить регулярные инспекции всех станций.

Северо-Западное УГМС

Наблюдения проводились на 11 станциях.

Воейково (х-н) Ефимовский (х-м) Калевала (х-м, к-с) Калининград (х-м, к-с) Лесогорский (х-м) Новгород (к-с) Олонец (х-м, к-с) Петрозаводск (х-м, к-с)

Псков (к-с) Советск (х-м, к-с, э-пр) Санкт-Петербург (х-м, к-с)

УГМС представило **Обзор** состояния работ по наблюдению за химическим составом и кислотностью за 2020 год **только в апреле 2021 года** после отдельного запроса из ФГБУ «ГГО», что является **нарушением Приказа Росгидромета** от 31.10.2000 № 156.

На станции Псков, величина рН измерялась на портативном рН-метре, не рекомендуемых для измерения в пробах осадков из-за малой чувствительности.

На станции **Санкт-Петербург прибор** для измерения **кислотности** осадков был **забракован** в ходе инспекции, выполненной ФГБУ «ГГО».

Пробы 9-ти станций отправлялись на химический анализ в лабораторию ФГБУ «ГГО».

В 2020 г. были проинспектированы 4 станции: Лесогорский, Петрозаводск, Псков, Санкт-Петербург.

Рекомендуется:

- станции Калининград, Олонец, Петрозаводск, выполняющие программу наблюдений за химическим составом и кислотностью осадков, оснастить запасными ведрами, согласно РД 52.04.878-2019;
 - заменить на станции Олонец пробоотборники;
- по возможности заменить на станциях Калевала, Олонец, Петрозаводск комбинированный электрод на электродную пару;
- заменить на станциях Санкт-Петербург и Псков портативные рH-метры на стационарные с электродной парой;
- устранить нарушения РД 52.04.878-2019 и Приказа от 18.07.2014 года № 421 на станции Санкт-Петербург;
- представлять ежегодный Обзор согласно требованиям Приказа Росгидромета от 31.10.2000 № 156.

Северо-Кавказское УГМС

Наблюдения проводились на 14 станциях.

Астрахань (к-с)	Владикавказ (к-с)	Волгоград (к-с)	Досанг (к-с)
Краснодар (к-с)	Кавказский БЗ (х-н)	Морозовск (х-м)	Махачкала (к-с)
Невинномысск (к-с)	Ростов-на-Дону (к-с)	Сочи (к-с)	Ставрополь (к-с)
Цимлянск (х-м, к-с)	Шаджатмаз (х-н)		

Величина рН определялась портативными рН-метрами с комбинированным электродом, не рекомендуемыми ввиду малой чувствительности, на станциях: Невинномысск и Ставрополь - «HANNA» Краснодар - ИТ-1101.

Пробы 4-х станций: Кавказский БЗ (Красная Поляна), Морозовск, Цимлянск и Шаджатмаз анализируются в лаборатории ФГБУ «ГГО».

В 2020 году специалистами УГМС проводились инспекции 8-ти станций, некоторые станции инспектируются 1 раз в квартал или ежемесячно.

Рекомендуется:

- заменить портативные рН-метры на стационарные на станциях Невинномысск, Краснодар, Ставрополь.
- по возможности заменить на станциях Астрахань, Волгоград, Владикавказ,
 Ростов-на-Дону комбинированный электрод на электродную пару;
- оснастить станцию Шаджатмаз белыми полипропиленовыми ведрами для отбора жидких и твердых проб осадков.

Среднесибирское УГМС

Наблюдения проводились на 13 станциях.

Ачинск (к-с, э-пр-с)	Балахта (х-м)	Байкит (х-м)
Ермаковское (х-м)	Енисейск (к-с)	Красноярск (х-м, к-с)
Кызыл (к-с)	Назарово (к-с, э-пр-с)	Норильск (х-м, к-с)
Туруханск (х-н)	Хакасская (к-ед)	Шарыпово (х-м, к-с)

Шумиха (к-с)

Пробы 7 станций направлялись на химический анализ в Саянскую КЛМС ФГБУ «Иркутское УГМС».

Станциям Балахта и Туруханск требуется обновление установки с ветровой защитой, штативом и оборудованием.

Специалисты УГМС провели инспекции 4-х станций.

Рекомендуется:

- заменить ведра на станциях Ачинск, Байкит; Балахта;
- станции Ачинск предоставить 1 запасное ведро;
- на станции Назарово организовать два пробоотборника для параллельного сбора осадков на кислотность и электропроводность.
- -по возможности заменить на станциях Енисейск Кызыл, Назарово, Норильск, Хакасская комбинированный электрод на электродную пару.

УГМС Республики Татарстан

Наблюдения проводились на 8 станциях.

 Акташ (х-м)
 Азнакаево (х-м)
 Бегишево (х-м)
 Бугульма (х-м)

 Вязовые (х-м, к-с)
 Казань (х-м, к-с)
 Мензелинск (х-м)
 Тетюши (х-м)

Пробы анализируются в лаборатории УГМС, результаты анализа регулярно направляются в ФГБУ «ГГО» электронной почтой.

В течение 2020 года силами УГМС была проинспектирована работа всех 8-ми станций.

В лаборатории УГМС химический состав осадков анализируется в пробах станций своего УГМС, а также пробы 4-х станций ФГБУ «Приволжское» УГМС и 5-ти станций ФГБУ «Уральское УГМС».

Уральское УГМС

Наблюдения проводились на 13 станциях.

В. Дуброво (х-м) Губаха (к-с) Екатеринбург (к-с)

 Каменск-Уральский (к-с)
 Красностурьинск (х-м, к-с)
 Курган (к-с)

 Н. Тагил (к-с)
 Мирный (х-м)
 Невьянск (х-м)

 Памятная (х-н)
 Пермь (к-с)
 Челябинск (к-с)

Шатрово (х-м)

На станции Нижний Тагил возобновили измерение кислотности с декабря 2020 года.

Пробы 4-х станций отправлялись на химический анализ в лабораторию УГМС «Республики Татарстан», а пробы одной станции Памятная (фоновая станция ГСА ВМО) – в лабораторию ФГБУ «ГГО».

В 2020 году, по данным из Годового отчета, силами специалистов УГМС инспектировалась работа 3-х станций: Губаха, В. Дуброво, Памятная, а также специалистами ФГБУ «ГГО» в он-лайн режиме - В. Дуброво, Екатеринбург, Курган, Памятное, Челябинск.

Рекомендуется:

- проводить регулярные инспекции всех станций;
- по возможности на всех станциях, использующих комбинированные электроды, заменить их на электродную пару.

Центральное УГМС

Наблюдения проводились на 12 станциях.

Балчуг (х-м) Волово (х-м, к-ед) Калуга (х-м)

Кострома (х-м, к-с) Мосальск (х-м) Переславль-Залесский (х-м) Пр.-Террасный БЗ (х-н, к-ед, э-пр) Смоленск (х-м, к-с) Сысоево (Рязань) (х-м, к-ед) Ясная Поляна (х-д, к-ед, э-пр)

На 3 станциях, отбирающих пробы для измерения величины рН и для химического анализа, Волово, Тула, Сысоево (Рязань), отсутствуют пробоотборники для раздельного отбора проб.

На станции Сысоево (Рязань) начали измерять величину рН.

На станции Тула используется дистиллированная вода с показателем ниже, а на станции Кострома выше допустимого значения, что является нарушением ГОСТ 6709-72.

Пробы осадков 4-х станций: Приокско-Террасный Б3, Смоленск, Тверь, Ясная Поляна регулярно направлялись для химического анализа в лабораторию ФГБУ «ГГО».

Пробы 8 станций анализировались в лаборатории СКФМ Приокско-Террасный Б3. Результаты химического анализа передавались в ФГБУ «ГГО» электронной почтой.

Все станции были проинспектированы в 2020 году.

Рекомендуется:

- по возможности на станциях Волово и Тула заменить комбинированный электрод на электродную пару;
 - на станции Тула заменить рН метр;
- на станциях Тула и Кострома не использовать дистиллированную воду с показателем pH, не соответствующим допустимым значениям 5.4-6,6 по ГОСТ 6709-72;
- станции Калуга и Мосальск для восстановления измерения кислотности оснастить необходимыми приборами для исполнения Приказа Росгидромета от 18.07.2014 г. № 421;
 - на станциях Сысоево (Рязань), Кострома, заменить пробоотборники.

УГМС ЦЧО

Наблюдения проводились на 12 станциях.

Белгород (х-м, к-ед, э-пр)Брянск (х-м, к-ед)Воронеж (х-м, к-ед)Воронежский БЗ (х-н, к-ед)Грязи (х-м, к-ед)Калач (х-м, к-ед)Курск (х-м, к-ед, э-пр)Липецк (х-м, к-ед)Орел (х-м, к-ед)Тамбов (х-м, к-ед)Старый Оскол (х-м, к-ед)Фатеж (х-м, к-ед)

В пробах станции Воронежский БЗ измерения рН проводятся с интервалом до 2 суток.

На станции **Калач** измерение рН выполняется на карманном рН-метре «**Checker**», не рекомендуемого ввиду малой чувствительности прибора.

На станции Курск для промывания пробоотборника используется порошок, что является нарушением РД 52.04.878-2019.

Нет данных, заменили ли **стеклянную посуду** на станциях **Брянск, Воронеж, Грязи и Липецк**, которые использовали для хранения проб осадков в 2019 году, что является нарушением. РД 52.04.878-2019.

Не поверены в 2020 году рН метры на станциях: Грязи, Калач, Курск, Липецк, Фатеж.

Недельные пробы фоновой станции ГСА ВМО Воронежский БЗ регулярно отсылаются в лабораторию ФГБУ «ГГО» для проведения химического анализа, пробы остальных станций анализируются в КЛМЗОС ФГБУ «Центрально-Черноземное УГМС».

Результаты измерения химического состава осадков передавались в ФГБУ «ГГО» электронной почтой.

Специалисты УГМС в 2020 году провели инспекцию четырех станций: Брянск, Воронеж, Старый Оскол, Воронежский БЗ.

Рекомендуется:

- заменить портативный рH-метр на стационарный с электродной парой на станции Калач;
- по возможности на станциях Белгород, Грязи, Липецк, Орел Фатеж заменить комбинированный электрод на электродную пару;
 - ежегодно поверять приборы для измерения рН на всех станциях;
 - заменить штатив и крепление ведра на станции Воронеж;
 - оснастить станцию Орел двумя штативами;
- станции, выполняющие программу наблюдений за химическим составом и кислотностью осадков, оснастить вторым ведром для раздельного отбора проб (+2 запасных);
- обеспечить станции Воронежский БЗ и Грязи прибором для измерения рН на станции сразу после отбора пробы;
 - проводить регулярные инспекции всех станций.

Чукотское УГМС

Наблюдения проводились на 2 станциях.

Анадырь (к-с) Певек (к-с, э-пр)

Измерения рН выполняются на станции Анадырь на рН-метре «**Checker**», не рекомендуемом ввиду малой чувствительности прибора.

С 2020 года на станции Певек стали измерять электропроводность.

Для измерений рН на станции Певек используется И-510, но при малом количестве осадков используется **рН-метр** «**Checker**».

Обе станции регулярно инспектировались.

Рекомендуется:

- заменить карманный pH-метр «Checker» на стационарный на станции Анадырь;
- оснастить пробоотборными устройствами станции Анадырь и Певек.

Якутское УГМС

Наблюдения проводились на 8 станциях.

 Депутатский (х-м)
 Жиганск (х-м)
 Кюсюр (х-м)

 Полярный (х-м)
 Сунтар (х-м)
 Тикси (х-м)

 Very, Мома (х-м)
 Замлен (х-м)

Усть-Мома (х-м) Якутск (х-м)

На станции Усть-Мома вместо дистиллированной воды используется кипяченая.

Пробы осадков 7-ти станций регулярно отправлялись на химический анализ в Саянск - лабораторию $\Phi \Gamma \delta Y$ «Иркутское УГМС. Пробы станции Тикси отправлялись в Санкт-Петербург в лабораторию $\Phi \Gamma \delta Y$ « $\Gamma \Gamma O$ ».

Проведена инспекция станции Якутск.

Рекомендуется:

- регулярно проводить инспекции всех станций;
- принять меры по обеспечению станции Усть-Мома дистиллированной водой.

2 АНАЛИЗ СОСТОЯНИЯ РАБОТ В АНАЛИТИЧЕСКИХ ЛАБОРАТОРИЯХ

2.1 Химический анализ атмосферных осадков

Анализ проб атмосферных осадков в 2019 г, отбираемых для определения их макросостава, выполнялся в 11-ти региональных химических лабораториях.

Все лаборатории представляют в ФГБУ «ГГО» полученные результаты химического анализа в виде таблиц заданной формы, разработанные специалистами ФГБУ «ГГО» и присылают данные по электронной почте. В таблицах предусмотрена полная обработка результатов и их контроль в соответствии с требованиями РД 52.04.186-89: а именно, автоматический подсчет суммы ионов, перевод показателей в единицы мг-экв/л, автоматический контроль анализа по ионному балансу и по электропроводности.

Лаборатории в городах Архангельск, Владивосток, Казань, Мурманск, Южно-Сахалинск, и в СФМ (Приокско-Террасный БЗ) и ФГБУ «ГГО» выполняют полный химический анализ атмосферных осадков по РД 52.04.186-89. Лаборатории ФГБУ «Башкирское УГМС», ФГБУ «УГМС Республики Татарстан», ФГБУ «Мурманское УГМС», ФГБУ «Приморское УГМС» и ФГБУ «ГГО» освоили и внедрили РД 52.04.167-2018.

Лаборатории в городах Курск, Уфа, Саянск, Нижний Новгород и **из-за отсутствия необходимого аналитического оборудования** в нарушение РД 52.04.186-89 по—прежнему вынуждены проводить химический анализ атмосферных осадков либо в укороченном варианте, либо с использованием методик с меньшей чувствительностью и избирательностью.

Лаборатория в Мурманске (ФГБУ «Мурманское УГМС») анализирует пробы 6-ти станций своего УГМС, осуществляющих месячный отбор проб, и станции Мурманск, на которой отбираются пробы единичных осадков. В отобранных пробах измеряются все компоненты. Суммарная ошибка химического анализа атмосферных осадков в основном не превышает 5 %. **Качество** аналитических измерений химического состава атмосферных оценивается как **удовлетворительное**.

Лаборатория ФГБУ «ГГО» выполняет химический анализ проб атмосферных осадков с 24-х станций, включая 7 станций ГСА ВМО, поступающих с территории 8 УГМС. Недельные пробы присылают 6 станций, декадные пробы — 1 станция. С 17-ти станций поступают пробы за месяц. Суммарная ошибка анализа не превышает 5 %. Лаборатория участвовала в интеркалибрации по линии ГСА ВМО -1 раз за год. Дополнительно в пробах измеряется содержание цинка. Качество аналитических измерений химического состава атмосферных оценивается как удовлетворительное.

Лаборатория в Казани (ФГБУ «УГМС Республики Татарстан») анализирует пробы 17 станций, в том числе 4-х станции своего УГМС, а также 4-х станций ФГБУ «Приволжское УГМС» и 5-ти станций ФГБУ «Уральское УГМС», отбирающих месячные пробы атмосферных осадков, и выполняет определение химического состава на все компоненты. В лаборатории освоена методика РД 52.04.167-2018. Суммарная ошибка химического анализа не превышает 5 %. Качество аналитических измерений химического состава атмосферных оценивается как удовлетворительное.

Лаборатория в Нижнем Новгороде (ФГБУ «Верхне-Волжское УГМС») выполняет химический анализ месячных проб атмосферных осадков 4-х станций своего УГМС». Измерение содержания кальция, магния и дополнительно цинка выполняется на атомно-абсорбционном спектрометре в смежной лаборатории. Не проводится измерение натрия и калия, поэтому оценка качества аналитических измерений химического состава атмосферных осадков по балансу анионов и катионов не представляется возможным.

Лаборатория в Курске (ФГБУ «Центрально-Черноземное УГМС») выполняет химический анализ на все компоненты в месячных пробах атмосферных осадков 11-ти станций своего УГМС. Анализы большинства компонентов выполнены в соответствии с РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы», часть II,

(М., Гидрометеоиздат,1991) кальций — по РД 52.24.403-2007 «Массовая концентрация кальция в водах. Методика выполнения измерений титриметрическим методом с трилоном Б», жесткость — по РД 52.24.395-2007 «Жесткость воды. Методика выполнения измерений титриметрическим методом с «трилоном Б». Суммарная ошибка химического анализа в основном не превышает 5 %. **Качество** аналитических измерений химического состава атмосферных осадков оценивается как **удовлетворительное.**

Лаборатория СФМ (ФГБУ «Центральное УГМС») выполняет химический анализ месячных проб атмосферных осадков с 8-ми станций своего УГМС. Определение катионов проводят в лаборатории ОМПВ ЦМС ФГБУ «Центральное УГМС» методом электрофореза на приборе «Капель-105М» по ПНД Ф 14.1:2:4.137-98 (2009) и ПНД Ф 14.1:2:4.138-98 (2010). Суммарная ошибка химического анализа в отдельных случаях превышала допустимую, поэтому оценка качества аналитических измерений химического состава атмосферных оценивается как неудовлетворительная.

Лаборатория в Уфе (ФГБУ «Башкирское УГМС»), анализирует пробы 4-х станции ФГБУ «Башкирское УГМС», отбирающих месячные пробы атмосферных осадков на химический анализ. В лаборатории освоена методика РД 52.04.167-2018. В лаборатории проводится определение всех основных компонентов химического состава. При расчете баланса ионов ошибка составляет в среднем более 10 %, при допустимых ± 5 . Содержание нитратов в пробах в среднем более 10 мг/дм³, что вызывает Для определения сомнение. нитратов используют ионноселективный не обеспечивающие требуемой чувствительности при измерениях в пробах атмосферных осадков. В Приложении 5 приведены сведения о мешающих компонентах при использовании ионселективных электродов. Следует также отметить, что при измерении величины удельной электрической проводимости ошибка определения в среднем превышает 50 % при допустимых ±20 %. В целом, **качество** аналитических измерений химического состава атмосферных оценивается как неудовлетворительное.

В лаборатории в Саянске (ФГБУ Иркутское УГМС») выполняется химический анализ в пробах атмосферных осадков, поступающих из 8-ми УГМС с 46-ти станций, включая 2 станции ГСА ВМО. На 4-х станциях осуществляют недельный отбор проб, на 42-х отбираются месячные пробы. Дополнительно проводится определение фторидов. Из-за отсутствия соответствующего оборудования определение концентрации иона магния проводится согласно РД 52.24.395-95. «Определение общей жесткости» п. 8.2.11. расчетным методом п. 6.3.4 приложение К. «Расчет массовой концентрации магния».

Определение концентрации иона кальция проводится по РД 52.04.186-89 п. 4.5.10 «Определение натрия и калия», в котором определение кальция не предусмотрено.

Учитывая загруженность лаборатории (обслуживает 46 станций) и качественный химический анализ, необходимо обеспечить лабораторию основным оборудованием (атомноабсорбционным спектрометром), чтобы исключить использование при определении магния расчетного метода.

Лаборатория принимала участие в **интеркалибрации по линии ГСА ВМО 1 раз за год**. Несмотря на отсутствие необходимого оборудования, суммарная ошибка химического анализа в основном не превышает 5 %. **Качество** аналитических измерений химического состава атмосферных оценивается как **удовлетворительное**.

Лаборатория во Владивостоке (ФГБУ «Приморское УГМС») анализирует пробы 12 станций, поступающих из 4-х УГМС, включая 1 станцию ГСА ВМО. Из них 10 станций проводят отбор месячных проб, одна — недельных и одна суточных. В отобранных пробах определяются все основные компоненты. Суммарная ошибка анализа не превышает 5 %. Лаборатория участвует в программе ЕАНЕТ. Дополнительно проводится определение содержания цинка. Лаборатория участвовала в интеркалибрации по линии ГСА ВМО - 1 раз за год и по линии ЕМЕР- 1 раз в год. Качество аналитических измерений химического

состава атмосферных оценивается как удовлетворительное.

Лаборатория в Архангельске (ФГБУ «Северное УГМС») выполняет химический анализ в месячных пробах атмосферных осадков, отобранных на **14-ти станциях своего** УГМС. Ошибка химического анализа ионного состава атмосферных осадков в основном не превышает 5 %. **Качество** аналитических измерений химического состава атмосферных осадков оценивается как **удовлетворительное**.

Лаборатория в Южно-Сахалинске (ФГБУ «Сахалинское УГМС») выполняет химический анализ в месячных пробах атмосферных осадков, отобранных на **3-х станциях своего УГМС».** Суммарная ошибка химического анализа атмосферных осадков в основном не превышает 5 %. **Качество** аналитических измерений химического состава атмосферных оценивается как **удовлетворительное.**

Таблица 1 - Список методов, применяемых в лабораториях при анализе проб атмосферных осадков (2020 г.)

	УГМС, (НИУ),					Определ	яемые компоненты					
№№ п/п	город, где находится лаборатории	рН	удельная проводимость	сульфаты	хлориды	нитраты	гидрокарбона- ты, кислотность	аммоний	натрий	калий	кальций	магний
1.	ФГБУ «Мурманское УГМС», г. Мурманск	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186-89, п.4.5.1.	ФР	1.31.2008.017	24	РД 52.04.186-89, п.4.5.8, п.4.5.3.	ФР 1.31.2008.01738			РД 52.04.167-2018.	
2.	ФГБУ «Башкирское УГМС», г. Уфа	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186-89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.24.367 -95 РД 52.04.186 -89	РД 52.04.186-89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6.		4.186-89, 5.10.	РД 52.04.	167-2018.
3.	ФГБУ «Приморское УГМС», г. Владивосток	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186-89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.04.186 -89, п.4.5.5.	РД 52.04.186-89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6.	, ,	04.186-89, РД 52.04.18 4.5.10. п.4.5.1		,
4.	ФГБУ «Центральное УГМС», Приокско- Террасный БЗ	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.04.186 -89, п.4.5.5.	РД 52.04.186-89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6.		4.1:2:4.138- 2010)		l.1:2:4.137- 2009)
5.	ФГБУ «Северное УГМС», г. Архангельск	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	Ρ,	Д 52.04.333-93	3	РД 52.04.186-89, п.4.5.8, п.4.5.3.		P	Д 52.04.333-9	93	
6.	ФГБУ «Иркутское УГМС» г. Саянск	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.04.186 -89, п.4.5.5.	РД 52.04.186-89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6.	04.186-			РД 52.24.403 -95, МУ с ТрБ
7.	ФГБУ «Верхне- Волжское УГМС», г. Н.Новгород	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.04.186 -89, п.4.5.5.	РД 52.04.186-89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6.	-	-	РД 52.0 ⁴ п.4.	4.186-89, 5.11

	УГМС, (НИУ),		Определяемые компоненты										
№ <u>№</u> п/п	город, где находится лаборатории	рН	удельная проводимость	сульфаты	хлориды	нитраты	гидрокарбона- ты, кислотность	аммоний	натрий	калий	кальций	магний	
8.	ФГБУ «Сахалинское УГМС» г. Южно- Сахалинск	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4	РД 52.04.186- 89, п.4.5.7	РД 52.04.186- 89, п.4.5.5.	РД 52.04.186- 89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6		4.186-89, 5.10.	_	_	
9.	ФГБУ «ГГО», г. Санкт- Петербург	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	РД 52.04.333-93			РД 52.04.186- 89, п.4.5.8, п.4.5.3.	РД 52.04.186- 89, п.4.5.6.	РД 52.04.186-89, п.4.5.10.		РД 52.04	.167-2018	
10.	ФГБУ «ЦЧО УГМС», г. Курск	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186- 89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.04.186- 89, п.4.5.5.	РД 52.04.186- 89, п.4.5.8, п.4.5.3	РД 52.04.186- 89, п.4.5.6.		4.186-89, 5.10.	РД 52.24.403 -2007	РД, РД 52.24.395- 2007	
11.	ФГБУ «УГМС Республики Татарстан», г. Казань	РД 52.04.186- 89, п.4.5.2.	РД 52.04.186-89, п.4.5.1.	РД 52.04.186- 89, п.4.5.4.	РД 52.04.186- 89, п.4.5.7.	РД 52.04.186- 89, п.4.5.5.	РД 52.04.186- 89, п.4.5.8.	РД 52.04.186- 89, п.4.5.6.		4.186-89, 5.10.	РД 52.04	.167-2018	

Примечания – 1. В Таблице 1 приведены данные, полученные из лабораторий с результатами внешнего контроля. В таблице 1 выделены методы, **не рекомендованные** к применению для химического анализа атмосферных осадков (РД **52.04.186-89**, ч. II, гл **4**,).

- 2. Только лаборатории ФГБУ «Башкирское УГМС», ФГБУ «Мурманское УГМС», ФГБУ «Республики Татарстан» и ФГБУ «ГГО» освоили и внедрили РД 52.04.167-2018.
- 3. В МП за 2019 были ошибочно указаны РД, **1979 г., общая жесткость вместо п. 8.2.11, вместо** РД 52.24.403-2007 и РД, РД **52.24.403**-95, МУ с ТрБ вместо РД 52.24.395-2007.

Таблица 2 - Список используемых реактивов и ГСО для химического анализа атмосферных осадков (2020 г.)

		УГМС (НИУ), город, где находится лаборатория												
Реактивы	Санкт-Петербург (ФГБУ «ГГО»)	ФГБУ «Мурманское УГМС», г. Мурманск	ФГБУ «Башкирское УГМС», г. Уфа	ФГБУ «Приморское УГМС», г. Владивосток	ФГБУ «Центральное УГМС»	ФГБУ «Северное УГМС», г. Архангельск	ФГБУ «Иркутское УГМС», г. Саянск	ФГБУ «Сахалинское УГМС», г. Южно-Сахалинск	ФГБУ «ЦЧО», г. Курск	ФГБУ «Республики Татарстан», г. Казань	ФГБУ «Верхне- Волжское УГМС» г. г. Нижний Новгород			
					pН									
Стандарт-титры для pH-метрии	до 2021 г.	до 2021г.	до 2020г.	до 2018г.	-		до 2024г.	до 2021 г.	до 2017г.		1,65, 9,18 до 2021г.			
Калибровочные растворы Наппа	-		-	-	до 2022г	-	-	-	-	-	-			
Калий хлористый, 99,8 %									до 2017г.					
			7	Удельная элек	стрическая п	роводимость								
ГСО УЭП 4	до 2021 г.	до 2022г	-	-	-	-	до 2022г.	до 2019г	до 2017г.	-	-			
ГСО УЭП 5							-	до 2022г.	до 2017г.					
					Сульфаты									
Барий хлористый	до 2020 г.	_	до 2020г.	до 2021г.	ч. до 2023г	-	до 2023г	до 2022г.	до 2017г.	до 2022г.	до 2021г.			
Этиленгликоль	до 2021 г.	_	до 2021г.	до 2018г	ч.д.а до 2021г	-	до 2021г	до 2021г.	-	до 2021г.	-			
Глицерин	-	-	-	-	-	-	-	-	до 2017г.	-	до 2021г.			
ГСО сульфата	до 2025 г.	до 2025г.	до 2022г.	до 2021г.	до 2021г	-	до 2021г	до 2023г.	до 2024г.	до 2022г.	до 2022г.			
Кислота соляная стандарт-титр							до 2027г		До 2030 г					
Натрий углекислый кислый		до 2021г.												
Натрий углекислый		до 2021г.												

				УГМО	С (НИУ), горо	од, где находи	тся лаборатор	рия			
Реактивы	Санкт-Петербург (ФГБУ «ГГО»)	ФГБУ «Мурманское УГМС», г. Мурманск	ФГБУ «Башкирское УГМС», г. Уфа	ФГБУ «Приморское УГМС», г. Владивосток	ФГБУ «Центральное УГМС»	ФГБУ «Северное УГМС», г. Архангельск	ФГБУ «Иркутское УГМС», г. Саянск	ФГБУ «Сахалинское УГМС», г. Южно-Сахалинск	ФГБУ «ЦЧО», г. Курск	ФГБУ «Республики Татарстан», г. Казань	ФГБУ «Верхне- Волжское УГМС» г. г. Нижний Новгород
					Хлориды						
ГСО хлорида	до 2024г.	до 2022г	до 2021г.	-	до 2023г	до 2020г	до 2022г.	до 2022г.	-	до 2022г.	до 2022г.
Аммоний хлористый, стандарт-титр				-			до 2021г		до 2018г	-	
Калий хлорид, 0,1 моль/дм ³	=	-	-	до 2018г.	с/т 2020г	-	до 2022г.	-	-	до 2023г.	до 2021г.
Кислота азотная, 70 %	до 2021г.	до 2020г.	до 2020г.	до 2018г.	до 2022г-	-	до 2027г.	-	до 2017г.	до 2021г.	до 2021г.
Натрия хлорид, 0,1 моль/дм ³	-	-	-	до 2018г.	с/т 2025г	-	-	-	-	до 2022г.	-
Спирт этиловый ректификат	ректиф.	-	ГОСТ 5962	до 2024г.	до 2022г		Не огранич.		2012г.	до 2020г.	ГОСТ 18300
Антисептический раствор (95% спирт)	-	-	-	1	-	-	-		-	-	-
Натрия гидроокись	до 2019г.	-	до 2021г.	до 2018г.	до 2021г	-	до 2021г.	-	до 2018г.	до 2021г.	до 2021г
Бромфеноловый синий	до 2021г.	-	до 2022г.	до 2019г.	до 2021г	-	до 2021г.	до 2021г	до 2017г.	до 2021г.	до 2021г
Дифенилкарбазон	до 2023г.	-	до 2021г.	до 2018г.	до 2021г	-	до 2023г.	до 2021г	до 2019г.	до 2022г.	до 2021г
Ртути нитрат	до 2024г.	-	до 2021г.	до 2018г.	до 2020г	-	до 2021г.	до 2021г	до 2016г.	до 2021г.	до 2021г
Калия хлорид	=	-	-	-	до 2020г	до 2022г	до 2022г	-	до 2017г.	до 2022г.	-
EGO	2024	2022	T	2020	Нитраты	T	2022	2022	2022	1 2022	2022
ГСО на нитраты Кислота сульфаниловая	до 2024г. до 2023г	до 2022г		до 2020г. до 2021г.	-	-	до 2022г. до 2023г.	до 2023г.	до 2022г. до 2019г.	до 2022г. до 2023г.	до 2022г.
Кислота уксусная, лед	до 2021г.	-		до 2019г.	-	до 2021г	до 2021г.	до 2020г.	до 2017г.	до 2021г.	-

				УГМО	С (НИУ), горо	од, где находи	тся лаборатор	рия			
Реактивы	Санкт-Петербург (ФГБУ «ГГО»)	ФГБУ «Мурманское УГМС», г. Мурманск	ФГБУ «Башкирское УГМС», г. Уфа	ФГБУ «Приморское УГМС», г. Владивосток	ФГБУ «Центральное УГМС»	ФГБУ «Северное УГМС», г. Архангельск	ФГБУ «Иркутское УГМС», г. Саянск	ФГБУ «Сахалинское УГМС», г. Южно- Сахалинск	ФГБУ «ЦЧО», г. Курск	ФГБУ «Республики Татарстан», г. Казань	ФГБУ «Верхне- Волжское УГМС» г. г. Нижний Новтопол
					Нитраты						
1-нафтиламин	до 2020г.	-		до 2018г.	до 2022г.	-	до 2022г.	-	до 2018г.	до 2020г.	-
Кадмий	1981г.	-			-		до 2016г.	Ч	до 2017г.	до 2023г.	б/срока годн.
Кадмий омедненный	-	-		ООО НПП «Акватест»	-	-		-	-	-	-
Медь сернокислая (11) 5 водная	до 2020г.	-		-	-			до 2021г	до 2019г.	-	до 2021г.
Реактив Грисса	-	-		-	-	-	-	до 2022г.	-	-	до 2022г.
Аммоний хлористый	до 2020г.	-		до 2021г.		-	до 2021г.	-	до 2019г.	до 2021г.	до 2021г.
Ртути хлорид (сулема)	до 2018г.	-		-	-	-	до 2020г.	-	-	до 2021г.	-
Кислота соляная	до 2021г.								до 2019г		
				Гид	црокарбонат	ъ					
ГСО гидрокарбонат	до 2022г.	до 2022г.	до 2020г.	-	до 2021г.	-	до 2021г.	до 2022г	-	до 2021г.	до 2022г.
Кислота соляная, 0,1 н	до 2027г.	до 2029г.	до 2021г	до 2024г.	-	-	до 2027г.	до 2023г.	до 2019г.	до 2027г.	до 2029г.
Натрия тетраборат 10-ти водный	до 2020г.	-	до 2024г.	до 2019г.	-	до 2021г.	до 2023г.	до 2022г.	до 2019г.	до 2022г.	до 2023г.
Метиловый красный	до 2023г-	до 2021г.	до 2021г.	до 2021г.	до 2022 г.	до 2022г.	до 2023г.	до 2022г	до 2021г.	до 2021г	до 2021г.
Метиленовый голубой	до 2022г.	до 2021г.	до 2020г.	до 2020г.	до 2022 г.	до 2022г.	до 2022г.	до 2021г	до 2022г.	до 2021г.	до 2021г.

				УГМО	С (НИУ), гор	од, где находи	ится лаборато	рия			
Реактивы	Санкт-Петербург (ФГБУ «ГГО»)	ФГБУ «Мурманское УГМС», г. Мурманск	ФГБУ «Башкирское УГМС», г. Уфа	ФГБУ «Приморское УГМС», г. Владивосток	ФГБУ «Центральное УГМС»	ФГБУ «Северное УГМС», г. Архангельск	ФГБУ «Иркутское УГМС», г. Саянск	ФГБУ «Сахалинское УГМС», г. Южно-Сахалинск	ФГБУ «ЦЧО», г. Курск	ФГБУ «Республики Татарстан», г. Казань	ФГБУ «Верхне- Волжское УГМС» г. г. Нижний Новгород
				P	Аммоний						
ГСО ион аммония	до 2023г.	до 2021г	до 2023г.	до 2018г.	до 2022г.	-	до 2022г.	до 2021г.	до 2022г.	до 2022г.	до 2022г.
Калий-натрий виннокислый 4-х водный	до 2023г.	до 2023г.	до 2019г.	до 2018г.	до 2023 г.		до 2023г.	до 2024г.	до 2019г.	до 2021г.	
Реактив Несслера	до 2023г.	до 2022г.	до 2021г.	до 2018г.	до 2023 г.	-	до 2023г.	до 2021г.	до 2018г.	до 2023г.	до 2021г.
]	Катионы						
ГСО на натрий	до 2023г.	до 2023г.	до 2023г.	до 2019г.	-	-	до 2022г.	до 2021 г.	до 2023г.	до 2023г.	-
ГСО на калий	до 2024г.	до 2024г.	до 2023г.	до 2019г.	-	-	до 2020г.	до 2021г.	до 2023г.	до 2025г.	-
ГСО кальций	до 2024г.	до 2023г.	до 2023г.	до 2021г.	-	-	до 2024г.	до 2023г.	-	до 2023г.	-
ГСО магний	до 2024г.	до 2023г.	до 2023г.	до 2019г.	-	-	-	до 2022г.	-	до 2023г.	-
Диэтаноламин(бис2окси- этиламин)	-	-	-	-	-	до 2021г	-	-	-	-	-
Цетилтриметиламмония гидроксил	-	-	-	-	-	до 2024г	-	-	-	-	-
Кислота соляная, 38%	До 2021г.	-	до 2021г	до 2019г.	до 2021г.	до 2021г.	-	-	до 2017 г.		до 2021г.
Кислота азотная	до 2021г.	до 2023г.	до 2020г.	до 2018г.	до 2022г.	-	-	-	до 2017 г.	до 2021г.	до 2021г.
Лантан азотнокислый 6- ти водный	-	до 2021г.	-	-	-		-	-		-	-
Кислота серная, 0,1Н	до 2019г.	до 2026г.	-	-	-	-	-	-	-	-	-
Эриохром черный ЕТ-00	-	-	-	-	-	-	до 2020 г.	-	до 2017г.	-	-

				УГМО		од, где находи	тся лаборатор	РИЯ			
Реактивы	Санкт-Петербург (ФГБУ «ГГО»)	ФГБУ «Мурманское УГМС», г. Мурманск	ФГБУ «Башкирское УГМС», г. Уфа	ФГБУ «Приморское УГМС», г. Владивосток	ФГБУ «Центральное УГМС»	ФГБУ «Северное УГМС», г. Архангельск	ФГБУ «Иркутское УГМС», г. Саянск	ФГБУ «Сахалинское УГМС», г. Южно-Сахалинск	ФГБУ «ЦЧО», г. Курск	ФГБУ «Республики Татарстан», г. Казань	ФГБУ «В-Волжское УГМС» г. Н- Новгород
Аскарит	до 2020 г.	до 2021г	-	-	до 2020 г.	-	до 2023 г.	-	-	до 2021г.	-
Трилон Б	-	-	-	-	-	-	до 2022г	-	до 2017г.	-	-
Аммиак водный 25%	-	-	-	-	-	-	до 2021г	-	до 2017г.	-	-
Мурексид	-	-	-	-	-	-	-	-	до 2017г.	-	-
Натрий едкий 98 % -ный в чешуйках	-	до 2021г	-	-	-	до 2021г			до 2018г.	-	-
Стандарт-титр аммоний хлористый, 0,1н	-	-	-	-	-	-	-	-	до 2018 г.	-	-
Винная кислота	-	-	•	-	до 2024г	до 2024г	-	-	1	-	-
Бензимидазол	-	-	•	•	до 2021г	до 2023г	-	-	•	-	-
18-краун-6	-	-	ı	•	до 2021г	до 2022г	-	-	•	-	-
Калия нитрат, х.ч.			до 2022г								
Калия хлорид, х.ч.			до 2023г								
Калий фосфорнокисл. 1 замещ., ч.д.а.			до 2023г								
Кислота о-фосфорная, х.ч.			до 2021г								

Примечания

^{1.} В таблице 2 приведены сведения, полученные в результате опроса при проведении ВНЕШНЕГО контроля.

^{2. .}РД 52.34.367-2010 потенциометрический метод. Вместо ГСО используются Аттестованные смеси (конц 6200; 620; 496 мг/л), которые готовят в из и нитрата калия. Далее готовится серия градуировочных p-poв с pNO_3 : 2,3; 3,0; 3,40; 4,0; 4,4; 5,0; 5,3; и 5,7.

Таблица 3 - Список оборудования лабораторий, выполняющих химический анализ атмосферных осадков (2020 г.)

Средства измерений	Санкт- Петербург, ФГБУ «ГТО»	ФГБУ «Северное УГМС», г. Архангельск	ФГБУ «Мурманское УГМС», г. Мурманск	ФГБУ «ЦЧО», г. Курск	ФГБУ «Иркутское УГМС», г. Саянск	ФГБУ «Приморское УГМС», г. Владивосток	ФГБУ «Сахалинское УГМС», г. Южно- Сахалинск	ФГБУ «Сахалинское УГМС», г. Александровск-	ФГБУ «Республики Татарстан», г. Казань	ФГБУ «Башкирское УГМС», г. Уфа	ФГБУ «В- Волжское УГМС» г. Н-Новгород	ФГБУ «Центральное УГМС»
КФК	-	-	-	КФК-3 УХЛ 4.2 (2004 г)	КФК-2 (1989)	-	-		-	-	-	КФК-3, 2015г
Иономер (рН-Метр) Титратор	АНИОН 4100 (2013)	рН-150 МИ (2016)	И-160МИ, 2018г	И-500 (2001 г)	АНИОН- 4110 (2008)	АНИОН- 4100 (2006)	METTLER TOLEDO S220 (2012)	рН-метр НІ 9125 порт,2019г	АНИОН- 7020 (2003)	АНИОН 4100 (2015)	«АНИОН 4120» (2015)	ЭКОТЕСТ -120 (2007)
Кондук- тометр	HANNA EC 215 (2009)	АНИОН 4100, 2018г	МАРК- 603, 2014г	АНИОН -410 A (2000)	АНИОН- 4120, 4100 (2007, 2015)	Mettler Toledo (2014)	HI 98308 (2010)	НЈ98308 порт,2008г	АНИОН- 7051 (2013)	АНИОН 4120 (2015)	«АНИОН 4102 (2015 г)	HI 2315 (2018) «Hanna»
AAC	iCE-3000 (2009)		КВАНТ - 2АТ, 2014г-	-	-	Shimadzu AA-6200 (2009 г)	КВАНТ- Z- ЭТА (2003)		iCAP 6200 Duo (2018)	AAC AA-7000 (2016)	AAC KBAHT- 2AT (2014)	-
ПФМ	M-410 Scherwood (2008)	-	-	ПФА- 378 (2013)	ПАЖ-2 (1984)	Sherwood M- 410 (2011)	КФК-3 2010г-		-	Нитра- томер ИТ-1201 (2016)	-	-
Спектро фотометр	UNICO 2100 (2008)	UNICO 1201 (2010)	-	-	UNICO 1201, 2010 (2012)	UNICO 1201 (2005)	UNICO 2100 (2013)	В-1100, 2019г	ПЭ 3000УФ (2010)	UNICO (2015)	Спектроф отометр «ПЭ- 5400ВИ» (2013)	Спектроф отометр ПЭ5300В, 2019г
Хромато графия, электрофо рез	ICS-900, (2009)	Капель 104Т, 2019г	«Стайер- А», 2 шт. (2008, 2012)	-		- FO waymang n	-		-	-	-	«Капель - 105М» (2016)

П р и м е ч а н и я – 1. Сведения получены из материалов при проведении ВНЕШНЕГО контроля в 2020 году.

2. Для ФГБУ «Приморское» приведены сведения за 2018 г 3. Красным выделено оборудование, не рекомендованное к использованию для химического анализ атмосферных осадков.

2.2 Внутренний контроль точности результатов измерений в 2020 году

В 2020 году результаты по внутреннему контролю получены из 11 лабораторий, выполняющих регулярный анализ проб атмосферных осадков сети мониторинга XCO Росгидромета. Обобщения сделаны по данным внутреннего контроля, выполненного в региональных лабораториях в 2020 году.

Нижний Новгород (ФГБУ «Верхне-Волжское УГМС»)

Результаты внутреннего статистического контроля качества аналитических измерений химического состава атмосферных осадков в 2019 году представлены для хлоридов, гидрокарбонатов, рН и удельной электрической проводимости, сульфатов, нитратов и аммония. По сульфатам, нитратам и аммонию представлены градуировочные графики, Приведены таблицы с результатами стабильности градуировочных характеристик.

Результаты контроля по перечисленным компонентам удовлетворительные.

Нет данных по металлам. Необходимо представлять данные по внутреннему контролю по всем измеряемым компонентам.

Архангельск (ФГБУ «Северное УГМС»)

внутренний контроль качества аналитических измерений компонентов в атмосферных осадках в условиях повторяемости. Измерение концентраций анионов и катионов атмосферных осадках исключением гидрокарбонатов) (за выполнено капиллярного электрофореза. Представлен Отчет градуировке D:\Капель\Elforun\Методы\катионы.mtk с электрофореограммами и градуировочными графиками для аммония, калия, натрия, магния, кальция. Нет данных по рН, удельной электропроводности, градуировочных графиков для сульфатов, нитратов.

Результаты контроля по полученным данным в целом оцениваются как удовлетворительные.

Владивосток (ФГБУ «Приморское УГМС»)

Данные не представлены.

Казань (ФГБУ «УГМС Республики Татарстан»)

Результаты внутреннего статистического контроля качества аналитических измерений химического состава атмосферных осадков представлены в электронном виде по всем компонентам по форме за год.

Представлены **градуировочные графики для аммония, сульфатов, нитратов. Определение кальция, магния, натрия и калия проводится на** эмиссионном спектрометре с индуктивно связанной плазмой iCAP 7200 Duo. Градуировка прибора производится каждый раз перед началом анализа.

Результаты контроля удовлетворительные.

Курск (ФГБУ «Центрально-Черноземное УГМС»)

Представлены данные по внутреннему статистическому контролю качества аналитических измерений химического состава атмосферных осадков за первое и второе полугодие и градуировочные графики для аммония, сульфатов, нитратов, натрия и калия, результаты контроля холостых проб при определении иона аммония и нитрат-иона. Нет результатов измерений удельной электрической проводимости и рН.

Результаты контроля по перечисленным компонентам удовлетворительные.

Мурманск (ФГБУ «Мурманское УГМС»)

Получены результаты внутреннего контроля качества аналитических измерений химического состава атмосферных осадков в электронном виде в формате exel. Результаты измерений стандартных растворов для построения градуировочных характеристик и градуировочные графики для анионов и катионов представлены с результатами внутреннего контроля.

Результаты контроля в целом удовлетворительные.

Приокско-Террасный БЗ (ФГБУ «Центральное УГМС»)

Получены результаты внутреннего контроля качества аналитических измерений содержания ионов аммония, сульфатов, хлоридов, нитратов, гидрокарбонатов, натрия, калия, кальция и магния, величины рН, удельной электрической проводимости в атмосферных осадках в виде таблиц оперативного контроля повторяемости, контроля точности и холостых проб. Градуировочные графики приведены.

Результаты контроля по представленным данным удовлетворительные.

Санкт-Петербург (ФГБУ «ГГО»)

Результаты внутреннего статистического контроля качества аналитических измерений химического состава атмосферных осадков по всем компонентам представлены в электронном виде по предложенной форме.

Градуировочные графики построены по всем компонентам по предлагаемой форме.

Представлены результаты: анализа холостых лабораторных проб; контроля стабильности градуировочной характеристики; контроля точности; контроль повторяемости.

Результаты контроля удовлетворительные.

Южно-Сахалинск (ФГБУ «Сахалинское УГМС»)

Результаты внутреннего статистического контроля качества аналитических измерений химического состава атмосферных осадков по всем компонентам представлены в электронном виде. Градуировочные графики построены для катионов и сульфат-ионов по предлагаемой форме. Не понятно, как построены графики для азота нитратного и аммонийного. Если применяли РД 52.24.380, что является нарушением, так как для химического анализа проб атмосферных осадков необходимо применять методики, указанные в РД 52.04.186-89. Не совсем понятно почему для построения градуировки на нитраты использовали растворы с концентрациями — 0,051, 0,102, 0,306, тогда как в РД 52.24.380 градуировку делают по растворам 0,01, 0,02, 0,04 и т. д. То же самое необходимо отметить и для аммония.

Приведены данные по контролю точности величины рН и удельной электрической проводимости для дистиллированной воды.

Результаты контроля не удовлетворительные.

Саянск (ФГБУ «Иркутское УГМС»)

Получены данные по внутреннему статистическому контролю качества аналитических измерений химического состава атмосферных осадков за первое и второе полугодие.

Результаты представлены: в виде таблиц статистического контроля точности, внутреннего контроля по требуемой форме; стабильности градуировочной характеристики; градуировочные графики на сульфаты, нитраты, аммоний, натрий, калий и кальций. **Нет данных по магнию.**

Градуировочные графики представлены по требуемой форме для всех компонентов. Результаты контроля по представленным данным удовлетворительные.

Уфа (ФГБУ «Башкирское УГМС»)

Получены результаты внутреннего статистического контроля качества аналитических измерений химического состава атмосферных осадков по аммонию, гидрокарбонатам,

хлоридам, нитратам, сульфатам, магнию, кальцию, калию и натрию в виде таблиц и градуировочных графиков.

Нет данных проведения внутреннего контроля при измерении удельной электрической проводимости.

Результаты контроля по представленным данным удовлетворительные.

2.3 Внешний контроль точности результатов измерений

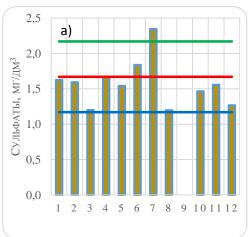
В 2020 году был проведен внешний контроль качества измерений химического состава атмосферных осадков с использованием синтетической пробы кислотного дождя для определения основных компонентов атмосферных осадков: сульфатов, нитратов, хлоридов, аммония, натрия, калия, кальция и магния, а также рН и удельной электрической проводимости. Участвовали 12 лабораторий Росгидромета.

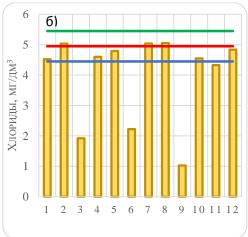
Согласно «Инструкция для приготовления контрольной пробы 2020 г.» полученную контрольную пробу разбавить в 10 раз. Для этого пипеткой с одной меткой отобрать 50 см³, перелить в мерную колбу вместимостью 500 см³ и долить до метки дистиллированной водой.

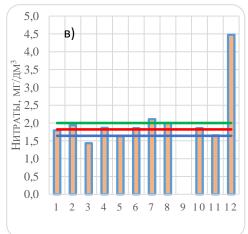
В приготовленном растворе измерить концентрации сульфатов, хлоридов, нитратов, гидрокарбонатов, аммония, натрия, калия, кальция, магния, рН и удельную электрическую проводимость не менее 3-х раз. Заполнить Таблицы 1 — 4, приведенные в Инструкции по приготовлению контрольной пробы. Результаты измерений внести в таблицу 1. В таблицах 2 и 3 привести сведения о применяемых методах, приборах и реактивах, в таблице 4 — результаты измерений рабочих стандартных растворов для построения градуировочных графиков и градуировочные графики для сульфатов, нитратов, аммония, натрия, калия, кальция и магния, а также величины рН, удельной электрической проводимости пробы и дистиллированной воды.

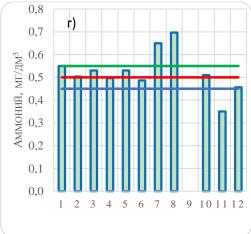
При выполнении измерений состава контрольной пробы в основном использовались МИ из РД 52.04.186-89 и РД 52.04.167-2018.

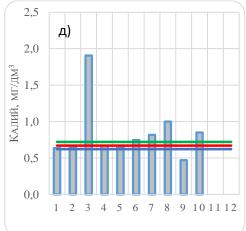
Результаты измерений контрольной пробы приведены в таблице 5 и на рисунке 2. В таблице 5 жирным шрифтом выделены значения, определенные с погрешностью выше допустимой. На рисунке 2 сплошная красная линия — заданное значение, зеленые и синие линии - границы допустимой погрешности для каждого компонента.

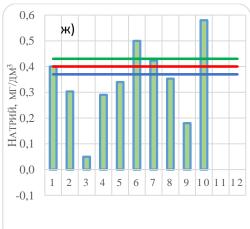

Величина рН и удельная электрическая проводимость заданы не были, так как конечный результат этих показателей зависит от качества дистиллированной воды. Значения рН дистиллированной воды, которая используется в лабораториях УГМС, и шифрованной пробы приведены на рисунке 3а. Величина удельной электрической проводимости дистиллированной воды — на рисунке 3б.


Наиболее благополучно обстоит дело с определением сульфатов, нитратов, аммония, и калия. Большинство лабораторий в основном определили заданные концентрации указанных компонентов в пределах допустимой погрешности.


Из-за отсутствия соответствующего оборудования (атомно-абсорбционных спектрометров и пламенных фотометров) и применения гидрохимических методов, не рекомендованных к использованию при определении химического состава атмосферных осадков, большинство лабораторий не смогли определить заданную концентрацию натрия, кальция и магния.


Сульфаты. Практически все лаборатории **кроме Северного УГМС** провели определение сульфатов в границах допустимой погрешности (рисунок 2a).


Хлориды. Также девять из двенадцати лабораторий справились с заданием. Измеренное значение концентрации хлоридов ниже заданного было определено в лаборатории Сахалинского, Центрального и Приморском УГМС (рисунок 2б).



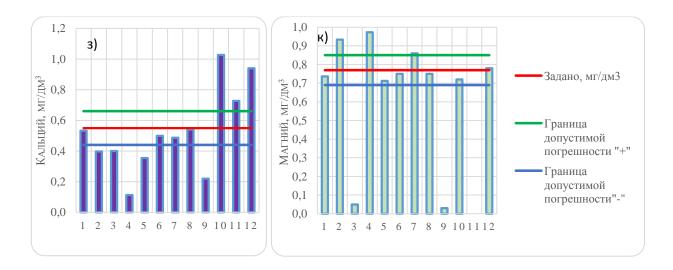


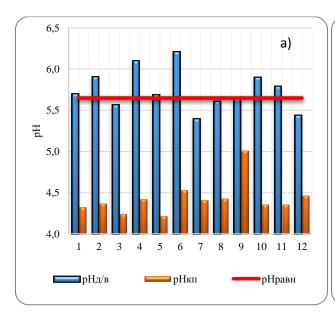
Рисунок 2 – Результаты внешнего контроля 2019 года в лабораториях:

ФГБУ «ГГО»; ФГБУ «УГМС Республики Татарстан»; 1 3 ФГБУ «Сахалинское УГМС» (Южно-Сахалинск); 4 – ФГБУ «Иркутское УГМС»; 5 УГМС»; ФГБУ «Мурманское 6 ФГБУ «Центральное УГМС»; ФГБУ «Северное УГМС; 8 ФГБУ «Центрально-Черноземное УГМС»; 9 – ФГБУ «Приморское УГМС»; 10 – ФГБУ «Башкирское УГМС»; 11 – ФГБУ «Сахалинское УГМС» (Александровск-Сахалинский); 12 – ФГБУ «Верхне-Волжское УГМС».

Нитраты. Десять лабораторий определили концентрацию нитратов в границах допустимой погрешности. Результаты измерений нитратов, полученные в лабораториях Сахалинского ниже, а в лаборатории Верхне-Волжского УГМС в 2,5 раза выше заданного значения (рисунок 2в.).

Аммоний. Четыре лаборатории из 12 показали неудовлетворительные результаты при определении иона аммония (рисунок 2г).

Отсутствие соответствующего оборудования в лабораториях сказалось на результатах определения катионов в контрольной пробе.


Калий. Значения концентрации калия близкие к заданному значению в контрольной пробе получили пять лабораторий из десяти участвующих. Это лаборатории ФГБУ «ГГО», ФГБУ «УГМС Республики Татарстан», ФГБУ «Иркутское УГМС»; ФГБУ «Мурманское УГМС» и ФГБУ «Центральное УГМС» (рисунок 2д).

Натрий. С определением натрия справились только две лаборатории: ФГБУ «ГГО» и ФГБУ «Северное УГМС» (рисунок 2ж).

Кальций. Содержание кальция в контрольной пробе близко к заданному значению в границах допустимой погрешности определили только 4 из 12 лабораторий: ФГБУ «ГГО», ФГБУ «Центральное УГМС», ФГБУ «Северное УГМС» и ФГБУ «Центрально-Черноземное УГМС» (рисунок 23).

Магний Семь из двенадцати лабораторий смогли определить содержание магния в контрольной пробе в границах допустимой погрешности: ФГБУ «Мурманское УГМС», ФГБУ «Центральное УГМС», ФГБУ «Северное УГМС, ФГБУ «Центрально-Черноземное УГМС», ФГБУ «Башкирское УГМС» и ФГБУ «Верхне-Волжское УГМС» (рисунок 2к)

По данным лабораторий величина pH в дистиллированной воде в основном находилась в пределах 5.5 - 6.1, что соответствует ГОСТ 6702-72 (рисунок 3a).

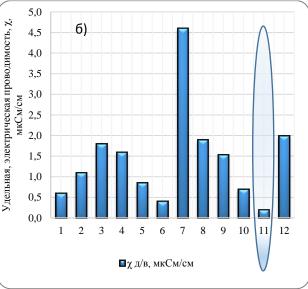


Рисунок 3 – а) Значения рН контрольной пробы и дистиллированной воды; б) удельной электрической проводимости дистиллированной воды в лабораториях Росгидромета: 1 – ФГБУ «ГГО»; 2 ФГБУ «УГМС Республики Татарстан»; – ФГБУ ФГБУ 3 «Сахалинское УГМС» (Южно-Сахалинск); 4 «Иркутское УГМС»; 5 ФГБУ УГМС»: ФГБУ «Центральное «Мурманское 6 УГМС»; 7 -ФГБУ «Северное УГМС»; 8 ФГБУ «Центрально-Черноземное УГМС»; 9 – ФГБУ «Приморское УГМС»; 10 – ФГБУ «Башкирское УГМС»; 11 – ФГБУ «Сахалинское УГМС» (Александровск-Сахалинский); 12 – ФГБУ «Верхне-Волжское УГМС».

В контрольной пробе по результатам измерений в большинстве лабораторий Росгидромета величина рН в основном ниже 4,5. Более высокие значения рН определены в лаборатории Приморского УГМС. Полученные результаты показали, что величина рН дистиллированной воды практически не влияет на величину рН контрольной пробы.

Величина удельной электрической проводимости дистиллированной воды в большинстве лабораторий не выходила за пределы интервала 0,2— 2,0 мкСм/см и соответствует ГОСТ 6702-72 (рисунок 3б). В лаборатории Северного УГМС удельная электрическая проводимость дистиллированной воды составила 4,5 мкСм/см, что не превышает допустимое значение 5,0 мкСм/см. Однако, учитывая низкую минерализацию атмосферных осадков, не рекомендуется использовать дистиллированную воду с величиной удельной электрической проводимости более 2,0 мкСм/см для химического анализа атмосферных осадков. В случаях, если значение удельной электрической проводимости превышает 2,0 мкСм/см, рекомендуется использовать бидистиллированную воду.

В контрольной пробе измеренное значение удельной электрической проводимости в большинстве лабораторий варьировало от 20 до 42 мкСм/см. Значения ниже среднего (35,4 мкСм/см) были определены в лабораториях Приморского, Иркутского и Сахалинского УГМС, что, скорее всего, связано с ошибкой разбавления контрольной пробы.

Результаты химического анализа контрольной шифрованной пробы, 2020 год

Таблица 5

											8t	1	ілированн і вода
УГМС, НИУ	Сульфаты	нтиdоrX	Нитраты	Гидрокарбо- наты	Аммоний	Натрий	Калий	Кальций	Магний	Hď	Удельная электрическая проводимость	Hď	Удельная электрическая проводимость
Задано	1,67±0,50	4,95±0,50	1,82±0,18	0,00	0,50±0,05	0,40±0,03	0,67±0,05	0,55±0,11	0,77±0,08	ед.рН	мкСм/см	ед.рН	мкСм/см
ФГБУ «ГГО» им. А.И. Воейкова,	1,62	4,52	1,80	0,00	0,55	0,40	0,64	0,53	0,74	4,3	39,0	5,7	0,60
УГМС РТ, г. Казань	1,59	5,03	1,94	0,00	0,50	0,30	0,65	0,40	0,93	4,4	42,0	5,9	1,10
Сахалинское УГМС, г. Южно- Сахалинск	1,20	1,92	1,44	0,00	0,53	0,05	1,91	0,40	0,05	4,2	26,6	5,6	1,80
Иркутское УГМС, г. Саянск	1,67	4,60	1,87	0,00	0,50	0,29	0,67	0,11	0,97	4,4	29,1	6,1	1,60
Мурманское УГМС, г . Мурманск	1,54	4,79	1,63	0,00	0,53	0,34	0,65	0,35	0,71	4,2	42,2	5,7	0,85
Центральное УГМС, СФМ	1,84	2,22	1,86	0,00	0,49	0,50	0,75	0,50	0,75	4,5	40,6	6,2	0,40
Северное УГМС, г. Архангельск	2,34	5,04	2,11	0,00	0,65	0,42	0,82	0,49	0,86	4,4	38,8	5,4	4,60
УГМС ЦЧО, г. Курск	1,20	5,05	2,00	0,00	0,70	0,35	1,00	0,54	0,75	4,4	31,7	5,6	1,90
Приморское УГМС, г. Владивосток	-	1,03	-	0,00	-	0,18	0,47	0,22	0,03	5,0	19,5	5,6	1,53
Башкирское УГМС, г. Уфа	1,46	4,55	1,86	1,62	0,51	0,58	0,85	1,03	0,72	4,4	37,7	5,9	0,70
Сахалинское УГМС, г. Александровск-Сахалинский	1,56	4,33	1,66	0,00	0,35	-	-	0,73	-	4,4	39,5	5,8	0,20
В-Волжское УГМС, г. Н-Новгород	1,27	4,84	4,48	0,00	0,46	-	-	0,94	0,78	4,5	37,9	5,4	2,00
Среднее	1,57	3,99	2,06	0,00	0,52	0,34	0,84	0,52	0,66	4,4	35,4	-	-

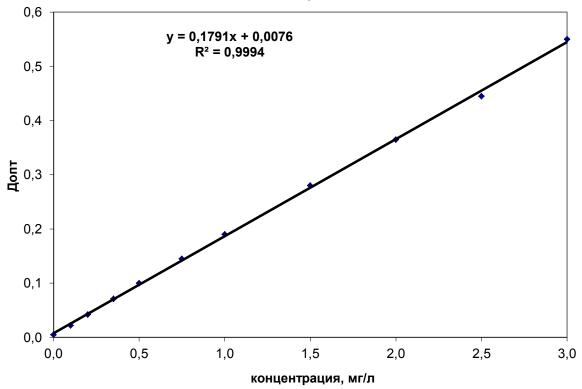
2.4 Рекомендации по построению градуировочных графиков

В соответствии с законом Бугера—Ламберта—Бера график в координатах оптическая плотность – концентрация должен быть линеен и прямая теоретически должна проходить через начало координат. В действительности графики строят только по экспериментальным точкам. В наших случаях, скорее подходит метод дифференциальной фотометрии, так как мы сравниваем растворы относительно холостой пробы, то есть дистиллированной воды, в которую добавлены все реагенты и в расчетах и построениях градуировочных графиков мы это должны учитывать. (В.П. Васильев «Аналитическая химия», физико-химические методы анализа, Изд. «Высшая школа», 1989г, с 70—73.)

По большому счету, обычная фотометрия — это частный случай дифференциальной фотометрии. В классической дифференциальной фотометрии в качестве раствора сравнения используют не чистую дистиллированную воду, а нулевую пробу со всеми ингредиентами. Но из-за длительности методов измерения концентрации очень часто характеристики нулевой пробы могут значительно измениться, что влияет на точность измерения. Поэтому была внесена поправка и нулевая проба измерялась относительно дистиллированной воды и в дальнейшем учитывалась при построении градуировочных графиков. При этом относительная оптическая плотность пропорциональна концентрации исследуемого вещества, и прямая не проходит через начало координат, что и доказывает построение градуировочных кривых, построенных по полученным данным специалистами ФГБУ «ГГО».

Следует отметить, что точки градуировочной кривой должны располагаться с обеих сторон приблизительно одинаково, а точнее — сумма квадратов отклонений от прямой справа и слева должна быть минимальной.

Построение градуировочного графика в таблице EXCEL


- 1.В столбце "А" в строке 1 указать "Сст.р-ров, мг/л";
- 2.В столбце "В" в строке 1 "Допт":
- 3.В столбце "A" записать по порядку концентрации стандартных растворов для построения градуировочного графика, начиная с нулевой точки "0";
- 4.В столбце "В" записать измеренное значение оптической плотности стандартных растворов среднее из трех измерений для построения градуировочного графика;
- 5.Выделить "мышкой" столбцы с данными, поставить курсор на "Мастер диаграмм", в появившемся окне выбрать "точечную", затем "готово";
- 6.Поставить курсор на одну из точек диаграммы и нажать левую клавишу "мышки". При этом все точки диаграммы будут активированы. Не передвигая курсор, нажать правую клавишу "мышки". Появится окошко.
- 7.В появившемся окошке выбрать строку "добавить линию тренда". Появится новое окошко.
 - 8.В появившемся окне выбрать тип "Линейная".
- 9. Не закрывая окно, в "Параметрах" поставить галочки "показывать уравнение на диаграмме" и "поместить на диаграмму величину достоверности аппроксимации (R^2)", затем "ОК". На диаграмме появится уравнение типа "y=ax + в" и величина достоверности аппроксимации "R"."у" оптическая плотность, "x"— концентрация компонента мг/л. Отсюда "x=(y-в)/a".
 - 10. Столбец "С" озаглавить №№п/п;
- 11. Столбец "D" №№ проб;
- **12.** Столбец "**E**" "С, мг/л пробы";
- **13.** Столбец "**F**" "Допт, пробы";
- 14. Поставить курсор на "Е"—2;
 - **15.** На строке формул "fx", поставить = (**F2 B**)/а;
 - 16. Поставить курсор на "Е-2" (при этом в строке формул появится формула), нажать "копировать", выделить нужное количество клеток столбца "Е" и нажать "вставить".

17. При внесении в столбец "F" данных оптической плотности в столбце "E" будет автоматически отображена концентрация компонента в мг/л.

Таблица 6 - Результаты измерений рабочих стандартных растворов для построения градуировочной характеристики

Сст.р-ров, мг/л	Допт	Сст.р-ров, мг/л	Допт
0.00	0.005	1,00	0,190
0.10	0.022	1,50	0,280
0.20	0.042	2,00	0,365
0.35	0.071	2,50	0,445
0.50	0.100	3,00	0,550
0.75	0.145		

Аммоний, мг/л

Дата:

Анализ выполнил(а):

Рисунок 4. Пример построения градуировочного графика по данным таблицы 5.

Примечание: Использовать эту рекомендацию при условии применения приборов без функции автоматического построения графиков, т.е. для приборов с аналоговой регистрацией аналитического сигнала.

ВЫВОДЫ И РЕКОМЕНДАЦИИ

ВЫВОДЫ

- 1. Сеть мониторинга химического состава и кислотности атмосферных осадков продолжает функционировать. По сравнению с предыдущими годами, состояние сети мониторинга ХСОиК заметно улучшилось. В части УГМС проведены мероприятия по устранению недочетов, отмеченных в предыдущих Методических письмах. По состоянию на 1 января 2021 года национальная сеть наблюдений за химическим составом и кислотностью (ХСОиК) осадков, включая станции ГСА ВМО, представлена 222 станциями.
- 2. В нескольких УГМС Верхне-Волжском, Крымском и Приволжском информация о химическом составе и кислотности атмосферных осадков используется при оценке экологического состояния региона, подготовке справок и обзоров.
- 3. **Недельный** отбор осадков для определения XCO осуществлялся на **12** станциях, на станции **Ясная Поляна декадный** отбор, на станциях **Мурманск единичный** и **Приморская суточный** отбор проб. На остальных станциях отбирались пробы за месяц.
- 4. Почти все УГМС проводили инспекции. В течение 2020 года проинспектировано 97 станций. В некоторых УГМС инспектируются одни и те же станции, оставляя другие без посещения. Наибольшее внимание инспекциям станций уделялось в УГМС Крымском, Обь-Иртышском, Приволжском, Республики Татарстан, Центральном и Чукотском, в которых все станции проинспектированы в течение 2020 года. Не проводили инспекции станций в УГМС Башкирском, Верхне-Волжском, Иркутском, Сахалинском и Якутском.
- 5. Специалистами ФГБУ «ГГО» в 2020 году проведены инспекции 8 станций: Магадан и Палатка (ФГБУ «Колымское УГМС»), Санкт-Петербург (ФГБУ «Северо-Западное УГМС») и в он-лайн режиме: В. Дуброво, Екатеринбург, Курган, Памятное, Челябинск. «ФГБУ «Уральское УГМС» В инспекциях проверено соблюдение требований РД 52.04.878-2019.
- 6. Недостаточное финансирование отражается на качестве выполнения наблюдений и на материально-техническом оснащении всей сети в целом. На части станций нет удовлетворительного оснащения для отбора проб осадков.
- 7. В УГМС выполняют измерения рН на приборах, не имеющих поверку на станциях: Бийск, Исктим, Крапивино, Кемерово, Новокузнецк, Новосибирск, Томск, Топки, Центральный Рудник (ФГБУ «Западно-Сибирское УГМС»), Вяземская, Троицкое, Хор (ФГБУ «Дальневосточное УГМС»), Грязи Калач, Курск, Липецк, Фатеж (ФГБУ «УГМС ЦЧО») и Санкт-Петербург (ФГБУ «Северо-Западное УГМС»).
- 8. На станциях в той или иной степени допускаются отклонения от РД 52.04.878-2019. что приводит к искажению данных о химическом составе и кислотности осадков.
- 9. На многих станциях до сих пор используются для отбора проб кюветы, эмалированные ведра, которые необходимо заменить на оборудование, указанное в РД 52.04.878-2019. Также необходимо все станции, отбирающие пробы на химический состав и кислотность оснастить двумя установками для параллельного отбора.
- 10. В части УГМС не улучшилось положение на сети наблюдений за кислотностью атмосферных осадков. Измерения кислотности осадков проводятся с отклонениями от РД 52.04.878-2019, не соблюдаются правила и сроки измерения кислотности атмосферных осадков, что приводит к получению недостоверных результатов: интервал между отбором пробы (суточной или единичной) и измерением рН превышает одни сутки. На станции Воронежский БЗ измерения рН проводились через 1-2 суток.

- 11. Использовались портативные приборы малой чувствительности, не рекомендованные для измерения рН атмосферных осадков на станциях: Невинномысск и Ставрополь «Checker», Краснодар ИТ-1101 (ФГБУ «Северо-Кавказское УГМС»), Калач «Checker» (ФГБУ «УГМС ЦЧО»), Анадырь «Checker» (Чукотское УГМС), Псков и Санкт-Петербург (ФГБУ «Северо-Западное УГМС»).
- 12. За отчетный период химический состав проб атмосферных осадков регулярно анализировался в **11 региональных лабораториях**.
- 13. Результаты анализа химического состава осадков и кислотность заносят в формы электронных таблиц, разработанные специалистами ФГБУ «ГГО». Заполненные формы пересылают по электронной почте в ФГБУ «ГГО».
- 14. В 2020 году в 11-ти лабораториях был выполнен внутренний контроль качества измерений проб атмосферных осадков и результаты были представлены в ФГБУ «ГГО».
- 15. Лаборатории ФГБУ «Башкирское УГМС», ФГБУ «Мурманское УГМС» ФГБУ «Приморское УГМС», ФГБУ «УГМС Республик Татарстан» и ФГБУ «ГГО» освоили РД 52.04.167-2018.
- 16. В 2020 году ФГБУ «ГГО» проводила внешний контроль точности результатов измерений. Участвовали 12 сетевых лабораторий Росгидромета, выполняющие измерения химического состав атмосферных осадков. В большинстве лабораторий были получены удовлетворительные результаты по многим компонентам.
- 17. Не все химические лаборатории имеют возможности обновить парк приборов, приобрести свежие реактивы и средства контроля. Особую озабоченность вызывает оснащение аналитических лабораторий в целом. Особенно это касается лабораторий ФГБУ «Центрально-Черноземное» УГМС (г. Курск), ФГБУ «Центральное» УГМС» (Приокско-Террасный БЗ), ФГБУ «Иркутское» УГМС (г. Саянск).
- 18. В течение нескольких лет не улучшается работа **лаборатории ФГБУ «Башкирское УГМС».** Результаты химического анализа текущих проб осадков и измерений контрольных проб остаются **неудовлетворительными.**
- 19. Из-за отсутствия в некоторых лабораториях атомно-абсорбционного спектрометра содержание иона кальция определяют на пламенном фотометре. При этом содержание иона магния определяется расчетным путем по результатам измерения общей жесткости. В этом случае определение иона магния приводит к большим погрешностям результатов измерений.
- 20. ФГБУ «ГГО» в течение 2020 года провело дополнительное анкетирование станций для более полного представления ситуации по программе наблюдений за ХСОиК, но данные, представленные в анкетах, не всегда корректны. В последующие года ФГБУ «ГГО» продолжит выборочное анкетирование станций по форме Анкеты (Приложение 1).
- 21. Большинство УГМС представляют ежегодные Обзоры о проделанной работе в соответствии с Приказом Росгидромета от 31.10.2000 г. №156.
- ФГБУ «Северо-Западное УГМС» представило Обзор состояния работ по наблюдению за химическим составом и кислотностью за 2020 год только в апреле 2021 года после отдельного запроса из ФГБУ «ГГО», что является нарушением Приказа Росгидромета от 31.10.2000 № 156.

В некоторых случаях Обзоры не полностью отражают состояние работ. В Обзорах и Анкетах имеются расхождения в приведенных сведениях, что может привести к снижению достоверности сведений о состоянии сети. ХСОиК.

РЕКОМЕНДАЦИИ

Для улучшения деятельности сети мониторинга кислотности и химического состава атмосферных осадков всем УГМС, ЦГМС необходимо:

- Устранить недостатки в работе сети станций, проводящих наблюдения за кислотностью и химическим составом атмосферных осадков, в соответствии с замечаниями, изложенными для каждого УГМС в настоящем методическом письме. О плане мероприятий по устранению недостатков и его реализации информировать ФГБУ «ГГО» в течение месяца после получения настоящего Методического письма.
- Довести информацию настоящего письма до всех подразделений, выполняющих работы по мониторингу химического состава и кислотности атмосферных осадков.
- Все осадки, собранные на станции в течение месяца (при отборе месячных проб) или недели (при отборе недельных проб), рекомендуется отправлять в **полном** объеме в соответствующую аналитическую лабораторию для анализа.
- Сопроводительная документация к пробам осадков и результатам химического анализа должна заполняться в соответствии с требованиями РД 52.04.878-2019 и последующими изменениями к нему; заполнение графы «Количество осадков по (стандартному) осадкомеру» обязательно.
- УГМС и региональным лабораториям обеспечить надлежащий контроль над соблюдением правил отбора и хранения проб атмосферных осадков на станциях, а также обеспечить регулярность отправки проб или сообщений об их отсутствии в лаборатории.
- Необходимо включить в программу проведения инспекции метеостанций проверку наличия и выполнения РД 52.04.878-2019, правильности измерений кислотности (рН), а также проверку условий хранения проб осадков.
 - Все пункты наблюдений следует обеспечить РД 52.04.878-2019.
- ullet Станции, выполняющие программу наблюдений за химическим составом и кислотностью осадков, оснастить двумя пробоотборниками для раздельного отбора проб (+ 2 запасных ведра).
- •Для предотвращения загрязнения проб атмосферных осадков азотной кислотой станциям, расположенным в **биосферных заповедниках**, не использовать одно и то же пробоотборное оборудование для сбора проб атмосферных осадков на общий химический анализ и на анализ тяжелых металлов.
- Оснастить станции, выполняющие наблюдения за кислотностью атмосферных осадков, соответствующей инструментальной техникой (стационарными приборами рН-метрами типа АНИОН) и обучить персонал станций правилам измерения величины рН.
- НЕ ПРИМЕНЯТЬ ПОРТАТИВНЫЕ ПРИБОРЫ в виду их малой чувствительности (см. Приложение 7).
- Аналитическим лабораториям при определении ХСО использовать методики, указанные в РД 52.04.186-89, РД 52.04.167-2018.
- •Всем лабораториям выполнять проверку правильности измерения химического состава осадков по двум критериям ионному балансу и балансу электропроводности согласно РД 52.04.186-89, с.470. В тех случаях, когда относительные отклонения суммы ионов превышают 5 %, а удельной электропроводности 20 %, анализ проб осадков должен быть проведен заново.
- Выполнять **внутренний контроль** качества анализов **дважды в год** согласно рекомендациям Приложения 5 (Методическое письмо «Состояние работ по наблюдению за химическим составом и кислотностью атмосферных осадков», 2000-2004 гг.).
- При построении градуировочных графиков и калибровке приборов пользоваться ГСО. Градуировочные графики строить с учетом холостой пробы.
 - Принять меры по улучшению качества химического анализа проб атмосферных

осадков в лаборатории ФГБУ «Башкирское УГМС».

- Региональным лабораториям ежегодно передавать результаты химического анализа в УГМС и ЦГМС, станции которых закреплены за лабораториями.
- ullet В планах повышения квалификации необходимо предусмотреть стажировку специалистов аналитических лабораторий в ФГБУ «ГГО».
- Всем станциям, осуществляющим наблюдения за кислотностью и химическим составом атмосферных осадков, заполнить Анкету (Приложение 1), заполненную в электронном виде (файл MSWord), отправлять в свое УГМС и в ФГБУ «ГГО» по электронной почте, дублирование в бумажном виде не требуется.
- УГМС при подготовке материалов годового Обзора работы оперативнопроизводственных сетевых органов в части наблюдений за кислотностью и химическим составом атмосферных осадков (Приказ Росгидромета № 156 от 31.10.2000 г.) использовать данные Анкет (Приложение 1).
- Годовые отчеты отправлять в ФГБУ «ГГО» по электронной почте (файл MSWord), дублирование в бумажном виде не требуется.
- При подготовке справок, обзоров об экологическом состоянии окружающей среды использовать информацию по данным наблюдений за химическим составом и кислотностью атмосферных осадков, учитывая материалы Приложения 8.

Для повышения качества информации, получаемой на сети мониторинга кислотности и химического состава атмосферных осадков, следует принять все необходимые меры со стороны руководства Росгидромета и УГМС.

AHKETA

СВЕДЕНИЯ О СТАНЦИЯХ ПО НАБЛЮДЕНИЯМ ЗА ХИМИЧЕСКИМ СОСТАВОМ И КИСЛОТНОСТЬЮ АТМОСФЕРНЫХ ОСАДКОВ

1. 2.	Название ста Географичес	нции кие координа	ты станции, поч	товый адрес (танции_		
3. 4.		аблюдений п	о программе ХС				
5.	ФИО началы		анции				
6.			а за сбор, оформ	ление, хранен	ние и отп	равку проб а	 тмосферных
oca	дков	на	химический	состав			кислотность
	Вид наблюд	*	, К, ХСОиК,	электропров	одность)	единичные	е, суточные
	` •	1 2	г <i>в)</i> грукции по отбо	ру проб РЛ 5	2 04 878-	2019	
			оотборников пр				
хим			слотности (нужн			1,,	,, ,,
9.2.	Два параллел	ьно.					
10.	Указать	количество	запасных	пробоотбо	рников	(ведра,	кюветы)
	лотность,		татив +емкость писание, м	_	_	химический которого	й состав или сделаны,
		ли пробоотбо	 рник крышкой і	в перерывах м	ежлу оса	 ілками:	
	нет (нужное г	-	- F	F			
			ты для отбора пр	об твердых о	садков ук	азать:	
Нал	ичие ветрово	й защиты: да	, нет (нужное по	дчеркнуть)			
			ваются твердые		ывается к	ювета или в	едро, чем
зак	рывается, име	ется ли спеці	иальная крышка))			
14.	Сообщить	состояние и	и потребность	в обновле	нии про	обоотборных	 х устройств
			вания пробоотб к, сода и т.п.)				
16.			ранятся отобра				
		сто. где хра	нятся все сборі	ные сосуды.	материа.	л. из котор	ого сделаны
	рные	сосуды,	цвет_		-		колбы
	1	1 1	на химический а	нализ:			
	 Отправляє 						
18.	2. Формируе 	тся суммарн	ая проба на ста	нции и отпр	авляется	аликвота (ч	асть прооы)
			дистиллирован				ых сосудов,
			воды				
	Определение 1. Тип и мар	-					

20.2.	Электродная пара						
20.3.	Комбинированный электрод						
20.4.	На станции непосредственно в течение 2-х часов: да, нет (нужное подчеркнуть)						
20.5.	В лаборатории (указать временной интервал после отбора)						
21. Ka	ак хранятся электроды между измерениями (в каком растворе):						
21.1.	Электродная пара						
21.2.	Комбинированный электрод						
22. O	пределение электропроводности:						
22.1.	Тип и марка прибора						
22.2.	Обеспеченность средствами поверки, указать дату последней поверки всех						
прибо							
22.3.	Проведение инспекций и результаты проверки						
22.4.	Регулярность наблюдений (указать, когда не было наблюдений)						
22.5.	Причина отсутствия проб (данных)						
23. П	ричины повышенного загрязнения проб или крайних значений рН:						
23.1.	Местоположение станции						
23.2.	Наличие охранной зоны						
23.3.	Открытость станции (удаленность в м от деревьев, холмов, зданий, линий						
электр	оопередач, местных источников загрязнения						
23.4.	Подстилающая поверхность метеоплощадки и ближайшего окружения (наличие и						
-	тер пылящих поверхностей, наличие и характеристика дорог и обочин (асфальт нка, песок и т.д.), наличие возделанных огородов/взлетных полос						
1	T - (1-1)						
23.5.	Загрязняющие объекты в радиусе 2 км (котельные, дымящие трубы, промышленные						
	риятия, с-х угодья, склады удобрений, ГСМ и химических веществ, проезжие дороги и						
-	крытие, жилые дома и постройки)						
	Отопление станции (тип отопления - печное, электрическое, паровое); характеристика						
испол	ъзуемого топлива - уголь, дрова						

ullet П р и м е ч а н и е — Обязательно сообщать о причинах закрытия станций, кем принято решение, указывать координаты, расположение и наличие загрязняющих объектов для вновь открывающихся станций. Каждая графа обязательна к заполнению.

[•] Анкету (Приложение 1), заполненную в электронном виде **(файл MSWord)**, отправлять в свое УГМС, и в Φ ГБУ «ГГО» по электронной почте, дублирование в бумажном виде не требуется.

Инструкция по отбору проб атмосферных осадков

(Отбор проб при наблюдениях за химическим составом атмосферных осадков РД 52.04.878-2019 введен в действие Приказом Росгидромета от 20.08.2019 № 398)

1 Отбор проб

- 1. При отборе проб должно быть полностью исключено попадание посторонних загрязняющих веществ в АО.
- 2. В качестве пробоотборника для отбора проб жидких и твердых осадков может использоваться следующее оборудование.
- 3. Ведро емкостью не менее 5 дм³ с крышкой, изготовленное из химически стойкого белого полиэтилена высокого давления (рисунки 1a и 1б).

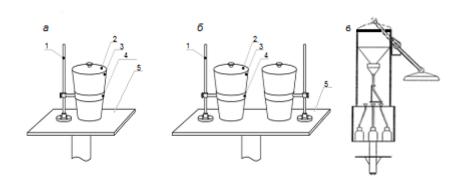


Рисунок 1 – Установки для отбора проб атмосферных осадков

- а установка для отбора суммарных проб атмосферных осадков; б установка для отбора суммарных и единичных проб; в автоматический пробоотборник;
 - 1 штатив; 2 крышка; 3 полиэтиленовое ведро; 4 кольцо держателя; 5 стол
- 4. Автоматический пробоотборник, состоящий из воронки и приемного сосуда и снабженный сенсором, который автоматически открывает крышку над приемной поверхностью в начале выпадения АО и закрывает ее после их прекращения (рисунок 1в). При этом сенсор должен срабатывать при интенсивности выпадения АО, превышающей 0.05 мм в час.
- 5. Пробоотборник для отбора проб AO располагается на метеоплощадке, на столике размером не менее 80x80 см, установленном на расстоянии не менее 3 м от площадки для наблюдений за температурой почвы.
- 6. Приемная поверхность пробоотборника для отбора проб АО должна быть не ниже 1,5 м от подстилающей поверхности.
- 7. Если на станции выполняются два вида наблюдений (ХСОиК), необходима установка двух пробоотборников параллельно (рисунок 1б): один из которых используется только при отборе проб АО для последующего химического анализа, а второй при отборе проб АО для определения рН и удельной электрической проводимости χ на станции.
- 8. На станции должны быть запасные пробоотборники. Если на станции проводится только один вид наблюдений (XCO или Кислотность), то должен быть один запасной пробоотборник. В случае двух параллельных видов наблюдений (XCOиK) необходимо два запасных пробоотборника.

- 9. Ведро объемом не менее 5 литров, изготовленное из белого полиэтилена с крышкой тщательно вымыть чистой водой с хозяйственным мылом (стиральные порошки и моющие средства для мытья осадкосборной посуды не применять). Затем ведро необходимо несколько раз тщательно ополоснуть чистой водой и последний раз дистиллированной. Ведро можно использовать для отбора как жидких, так и твердых (снега) осадков. Ветровая защита в этом случае не требуется.
- 10. В период отсутствия осадков пробоотборное устройство необходимо закрывать крышкой, чтобы осадки не испарялись и внутрь не попадали различные твердые и пылеобразные загрязнения. Если осадки идут с небольшими перерывами (1—2 часа), то ведро можно не закрывать.
- 11. В конце периода отбора ведро закрывают крышкой и переносят в помещение станции, где переливают пробу в специально подготовленную для этого посуду.

12. Посуда для пробы присылается из лаборатории и используется только для проб атмосферных осадков.

- 13. Переливать пробу в сборную колбу необходимо с помощью воронки из химического стекла или белого полиэтилена. Воронку необходимо вымыть теплой водой с хозяйственным мылом и тщательно выполоскать чистой водой и дважды ополоснуть дистиллированной водой. После использования воронку опять промыть, как указано выше, тщательно стряхнуть остатки воды и поместить на хранение в чистый полиэтиленовый пакет. После заполнения одной колбы используют следующую свободную колбу.
- 14. Следует помнить, что нельзя смешивать осадки, выпавшие в течение разных недель при недельном, декад при декадном или месяцев при месячном отборе проб. В случае продолжительного дождя или снегопада необходимо собрать их полное количество, при этом могут быть последовательно заполнены несколько колб. **Пробы необходимо хранить при температуре** +5 °C.
- 15. Пробоотборник, используемый при отборе проб атмосферных осадков, а также крышки, после переливания из них проб тщательно ополаскивают дистиллированной водой. Стряхивают остатки воды, закрывают крышками, укладывают раздельно в полиэтиленовые пакеты и хранят в шкафу или специальном ящике до очередного отбора пробы.
- 16. Емкость с пробой надписывают, указав время отбора пробы (месяц, неделя, сутки и т. д.) и отправляют в химическую лабораторию для анализа как можно быстрее. До отправки заполненные емкости с пробами атмосферных осадков необходимо хранить в плотно закрывающемся шкафу на отдельной полке или в холодильнике.
- 17. Пробу с атмосферными осадками необходимо сопроводить таблицей (Приложение 3), в которой указать номер колбы, время выпадения осадков, характер и вид осадков, количество осадков по стандартному осадкомеру, направление и скорость ветра, температуру воздуха, погоду. Отметить особые явления, если таковые наблюдались в период, предшествующий отбору или во время отбора пробы.
- 18. Если есть возможность на станции, в пробе сразу после отбора можно измерить значение рН. Значения рН после измерения необходимо занести в таблицу.

19. <u>Часть пробы, которая использовалась для измерения рН, обратно</u> в емкость с пробой выливать нельзя, так как проба при этом загрязняется!

- 20. Если в зимний период используют кювету, ее в ветровую защиту. По окончании выпадения твердых осадков, кювету или ведро закрывают крышкой, переносят в помещение метеостанции. Кювета или ведро с осадками должны быть закрыты крышками до полного таяния снега, и находиться как можно дальше от источников обогрева.
- 21. В конце каждого месяца установки для отбора проб атмосферных осадков промывают теплой водой с хозяйственным мылом, затем теплой чистой водой, после чего ополаскивают дистиллированной водой не менее трех раз и помещают в чистые полиэтиленовые пакеты.
- 22. Использование для мытья установки для отбора проб атмосферных осадков синтетических стиральных порошков и питьевой соды категорически запрещается, поскольку

следы этих веществ при последующем ополаскивании водой полностью не удаляются и могут быть причиной искажения химического состава осадков.

23. В помещении, где хранятся пробы осадков, нельзя хранить химические вещества бытового и производственного характера (поваренную соль, растворы аммиака, кислот, оснований и так далее).

Примечания:

- Сведения об измерениях рН представлять только в формате файла Excel, содержащем 12 листов (по числу месяцев в году: один лист один месяц).
- Необходимо результаты измерений каждого месяца заносить в лист соответствующего месяца последовательно и <u>ЕЖЕМЕСЯЧНО</u> пересылать обновленный файл (все 12 листов) ЭЛЕКТРОННОЙ ПОЧТОЙ.

2. Форма записи информации при отборе проб атмосферных осадков

		жбы, агентства)	
Год Мес:	яц	Период отбора	
Станция	Область	Район	
Широта		Долгота	
Начальник станции	Старі	ший наблюдатель	
Наблюдатели			
Высота метеоплощ	адки		
`	•	а установки, особые атмосферные яв	ĺ
, ,		милия, должность	
Замечания критиче	ского контроля на станц	ции	
инициалы, фамилия, до	лжность		
Проверил			
инициалы фамилия ло	пжность		

Т а б л и ц а - Форма ежемесячной записи на станциях отбора проб атмосферных осадков

Станция_			Γο	ОД	M	[есяц		П	ериод	отбора			
Дата Начало и	Oc	адки	Ветер		От-	Т	Облачность		No No	Удель- ная			
выпаде- ния осад- ков	конец отбора пробы, (час:мин)	Харак- тер и вид	Количе- ство по осадко- меру, мм	Направ- ление, « ⁰ »	Ско- рость, м/с	тель-	Температура воздуха, ⁰ С	Количе- ство (общ/ низ)	Фор- ма	Колб, в кото- рые слиты осадки	электри- ческая проводи- мость, х, мкСм/см	рН	Примечание
	по дней адками	Число колб 	Количеств осадков, м за период отбора	М									
Наблюдате													
	I	подпись			иниці	иалы, фамилі	ИИ						

ОСНОВНЫЕ ПРИНЦИПЫ ИЗМЕРЕНИЯ **рН** В ПРОБАХ АТМОСФЕРНЫХ ОСАДКОВ

При измерении рН атмосферных осадков следует иметь в виду, что осадки обладают рядом свойств, присущим им как слаборазбавленным растворам.

В условиях незагрязненной атмосферы осадки имеют слабокислую реакцию среды, а значение рН колеблется в диапазоне от 5,40 до 5,60. Однако в атмосферном воздухе постоянно присутствуют соединения, которые могут значительно изменить величину кислотности атмосферных осадков.

Условия измерения величины рН слабоминерализованных растворов (атмосферных осадков, снежного покрова)

Для того чтобы измерить pH, требуется средство измерения, чувствительное к ионам водорода, которые определяют значение pH. Принцип измерения состоит во взаимодействии между сенсором со стеклянной мембраной (измерительный электрод), чувствительной к ионам водорода, и раствором образца. Согласно теории стекло стеклянного электрода (pH-сенсора) — это ионообменник, который может вступать в ионообменное взаимодействие с раствором. Стекло при этом рассматривается как твердый электролит. Стекло, состоящее из окислов натрия, кальция, кремния, обладает резко выраженным специфическим средством к ионам H+. Вследствие этого при соприкосновении с водными растворами в поверхностном слое стекол образуется слой, в котором ионы Na+ оказываются почти полностью замещенными на ионы H+. Поэтому мембранный электрод, изготовленный из такого стекла, обладает H+ функцией.

При изменении рН в растворе, с которым контактирует стекло, количество протонов (ионов водорода) на поверхности стекла меняется. Так как протон имеет заряд, то между наружной поверхностью и внутренней появляется разность потенциалов. Именно ее и измеряют приборы. Тем не менее, наблюдаемый потенциал одного рН-чувствительного электрода не обеспечивает достаточно информации, поэтому необходим еще один сенсор – электрод сравнения (проточный электрод). Он обеспечивает калибровочный сигнал или потенциал для рН-сенсора. Для определения значения рН измеряемого образца необходимо использовать разницу потенциалов обоих электродов.

Измерительный рН-электрод (рН-сенсор) — это та часть, которая фактически чувствительна к рН раствора. Он состоит из стеклянного стержня с тонкой стеклянной мембраной на конце, чувствительной к ионам водорода — Н+. Отклик рН-чувствительного электрода зависит от концентрации ионов Н+ и, таким образом, дает сигнал, определенный кислотным или щелочным характером раствора.

Цель электрода сравнения — обеспечить определенный стабильный потенциал, относительно которого измеряется потенциал рН-сенсора. Электрод сравнения не реагирует на концентрацию ионов H+ в растворе образца и всегда производит один и тот же постоянный потенциал рН-сенсора. Конструкция электрода такова, что внутренний элемент сравнения помещен в определенный буферный раствор (насыщенный раствор хлористого калия) и непрямо контактирует с раствором образца через мембрану. Эта контактная цепь обеспечивает стабильный потенциал, который называют еще опорным или нулевым потенциалом. Важно, чтобы электролит сравнения (хлорид калия) имел высокую

концентрацию ионов, что обеспечивает низкое электрическое сопротивление.

Потенциал между двумя электродами — это мера ионов водорода в растворе, которая по определению, дает рН-значение раствора. Этот потенциал является линейной функцией концентрации ионов водорода в растворе, что позволяет проводить количественные измерения.

Комбинированные электроды намного более просты в обращении, чем два отдельных электрода и очень часто используются в настоящее время. Комбинированные стеклянные рН-электроды объединяют в одном корпусе измерительный электрод и электрод сравнения.

К достоинствам комбинированных электродов следует отнести следующее:

- они компактнее электродной пары;
- проще в обслуживании;
- -применение одного датчика вместо двух снижает вероятность внесения загрязнений в пробу;
- многочисленные варианты конструкционного исполнения позволяют проводить измерения в самых различных условиях, даже таких, в которых прямые измерения при помощи электродной пары невозможны.

Все это делает комбинированные электроды очень привлекательными.

Тем не менее, электродная пара предпочтительнее комбинированного электрода. В результате многочисленных экспериментов было установлено, что при измерении рН комбинированным электродом сильно разбавленных растворов, таких как атмосферные осадки, происходит изменение состава пробы вследствие быстрого истечения раствора КСІ из электрода в анализируемый раствор. Из-за низкой минерализации атмосферных осадков обеспечение стабильного потенциала занимает больше времени, чем при использовании 2-х электродов. При этом увеличивается контакт измеряемой пробы с атмосферой и, как следствие, в результате поглощения углекислого газа из атмосферного воздуха изменяются изначальные характеристики пробы. Это приводит к ошибке измерения и ложным результатам. Поэтому настоятельно рекомендуется применять раздельную электродную пару. При этом электрод сравнения необходимо устанавливать несколько ниже стеклянного шарика измерительного электрода.

Инструкция для рН-метра с двумя электродами: измерительным и вспомогательным

Перед первым применением, а также раз в месяц электроды необходимо замачивать в 0,1N растворе соляной кислоты. Для этого электроды погружают в 0,1 N раствор HCL на сутки. После замачивания электроды необходимо тщательно промыть дистиллированной водой.

Примечание. При измерении значения pH необходимо использовать режим автоматической температурной компенсации!

- 1. Подготовка
- 1.1. Включить прибор в сеть и прогреть не менее 20—30 мин.
- 1.2. Открыть заливочное отверстие в электроде сравнения.
- **1.3.** Проверить уровень электролита в электроде сравнения. При необходимости электролит следует долить. Внутри электрода сравнения должно всегда находиться небольшое количество кристаллов хлористого калия. Уровень электролита в электроде при измерениях должен быть выше уровня анализируемого раствора!

1.4. Тщательно промыть электроды дистиллированной водой.

2. Калибровка

2.1 Перед началом измерения производят калибровку прибора по буферным растворам 4.01 и 6.86 (7.01).

Примечание. В первые несколько дней эксплуатации прибора или нового стеклянного электрода калибровку прибора по буферным растворам следует проводить каждый день, так как характеристики стеклянного электрода могут измениться. При последующей работе с прибором калибровка по буферным растворам может проводиться значительно реже (до 1 раза в 3 дня). Также калибровка прибора необходима, если существует предположение, что показания прибора некорректны. Следует иметь в виду, что допустимая погрешность составляет не более 0.05 ед. (согласно РД 52.04.186-89). Электроды перед погружением в буферный раствор необходимо тщательно промыть дистиллированной водой, остатки с электродов удалить фильтровальной бумагой.

3. Измерение рН

- 3.1 Концы электродов погружают в предварительно подготовленный испытуемый раствор так, чтобы измерительный шарик стеклянного электрода был полностью погружен в раствор, а электрод сравнения был установлен немного ниже измерительного электрода. После того, как показания прибора примут установившееся значение, записывают величину рН в журнал.
- 3.2 После каждого измерения электроды тщательно промывают дистиллированной водой. Часть пробы, которая использовалась для измерения рН, обратно в емкость с пробой выливать нельзя, так как проба при этом загрязняется.
- 3.3 По окончании работы с прибором электроды для измерения рН должны оставаться погруженными в дистиллированную воду. Заливочное отверстие электрода сравнения необходимо закрыть.

Примечание. Следует отметить, что pH должен быть измерен сразу после отбора пробы. Если такой возможности нет, пробу атмосферных осадков необходимо хранить в плотно закрывающемся шкафу на отдельной полке или в холодильнике. В зимний период перед измерением pH твердые осадки растапливают в закрытом ведре (кювете) в помещении метеостанции вдали от источников обогрева.

ОПРЕДЕЛЕНИЕ КИСЛОТНОСТИ-ЩЕЛОЧНОСТИ МЕТОДОМ ОБРАТНОГО ТИТРОВАНИЯ

1 этап. Определение нормальности тетрабората натрия (буры) РД 52.04.186-89 (стр. 493 п. 7.4 и стр. 476 п. 4.3)

<u>№№</u> пробы	рН	V _{HCI} 0,005н мл	(V _{HCI} *0.005)	V _{буры} мл	$({ m V_{\rm 6yph}}^*{ m N_{\rm 6yph}})$	(V _{HCI} *0.005)- (V _{буры} *N _{буры}) MГ-ЭКВ/Пробе	$(V_{ m HCl}*0.005)$ - $(V_{ m буры}*N_{ m буры})*$ 50 C_1 мг-экв/л	С ₂ мг/л
1	4,57	1,0	0,005	0,81	0,00555	-0,00055	-0,028	0,028
(кислая)								кисл
2	5,60	1,0	0,005	0,73	0,00500	0	0	0
(равновесная)								
3	6,77	2,0	0,01	0,80	0,00548	0,00452	0,226	13,79
(щелочная)								HCO ₃
I	I	1		1	I	1	1	1

При определении C_2 массовой концентрации иона в мг/л, окончательный результат рассчитывают по формуле:

 $C_2 = C_1 * m, M\Gamma/Л,$

где:

 C_1 _ концентрация иона в мг-экв/л;

m — масса иона как сумма атомных масс всех составляющих его компонентов, мг.

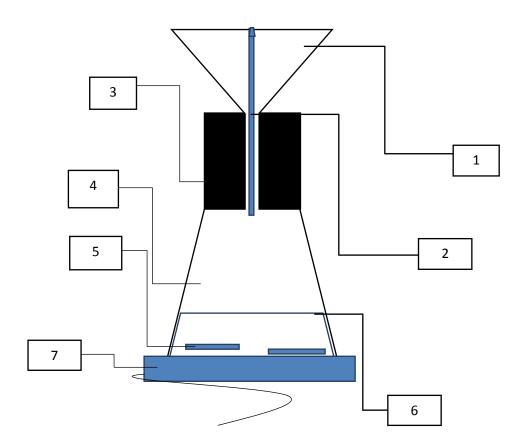
Атомная масса иона водорода равна 1, а сумма атомных масс гидрокарбоната — 61.

Для перевода концентрации мг-экв/л в мг/л необходимо концентрацию иона водорода умножить на 1, а концентрацию гидрокарбоната — на 61.

Перечень ионселективных электродов

Электроды с поликристаллической мембраной

Определяемый ион	Диапазон определения, моль/л	Нижний предел обнаружения, мг/л	Допустимый диапазон рН	Мешающие ионы
F	1—1·10 ⁻⁶	0,02	5—7	_
CI	1—3·10 ⁻⁵	1,75	1—12	S²-, Γ,Β r-


Электроды с мембраной из ПХВ Концентрации, при которых мешающие ионы влияют на определение

Определяемый ион	Диапазон определения моль/л	Нижний предел обнаружения, мг/л	Допустимый диапазон рН	Мешающие ионы
K ⁺	0,1—1·10 ⁻⁵	0,4	1—9	Na ⁺ , NH ⁺ , Ca ²⁺
Ca ²⁺	0,1—2·10-5	2,3	4,5—10	Na ⁺ , Mg ²⁺ , K ⁺
NO ₃ -	0,2—2·10 ⁻⁵	1,3	1—10	Cl ⁻ , NO ₃ ⁻
NH ₄ ⁺	0,2—2·10 ⁻⁵	0,2	0—8,5	Na ⁺ , Ca ²⁺ , K ⁺

Инструкция для мытья посуды для химического анализа атмосферных осадков

- 1. Для мытья стеклянной и полиэтиленовой химической посуды, используемой для химического анализа атмосферных осадков, необходимо применять только хозяйственное мыло.
- 2. Намылить ершик и тщательно обработать ершиком посуду и крышки с внутренней и наружной сторон.
- 3. Тщательно прополоскать несколько раз обработанную хозяйственным мылом посуду теплой водопроводной водой.
- 4. Пропарить посуду на парилке (см. рисунок-схему) до образования конденсата на стенках посуды.
- 5. После пропаривания сполоснуть несколько раз дистиллированной водой.
- 6. Стеклянную посуду высушить в сушильном шкафу при температуре $105\,^{0}$ С.
- 7. Полиэтиленовую посуду высушить при комнатной температуре в перевернутом состоянии.
- 8. Если используются резиновые пробки, их необходимо прокипятить в дистиллированной воде.
- 9. Высушенную посуду закрыть крышками и хранить отдельно от посуды, используемой для химического анализа природных вод.

Рисунок-схема. 1— воронка; 2- стеклянная трубка; 3 — резиновая пробка с отверстием; 4 — стеклянная колба из термостойкого стекла вместимостью 500 см³; 5 — кипелки (капиллярные трубочки); 6 — дистиллированная вода; 7 — электроплитка.

РЕКОМЕНДАЦИЯ ПО ИСКЛЮЧЕНИЮ ПРИМЕНЕНИЯ ПОРТАТИВНЫХ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЙ ВЕЛИЧИНЫ РН И ПОРТАТИВНЫХ И КАРМАННЫХ КОНДУКТОМЕТРОВ В АТМОСФЕРНЫХ ОСАДКАХ

<u>HE ИСПОЛЬЗОВАТЬ</u> портативные и карманные приборы для измерения рН и удельной электрической проводимости в пробах атмосферных осадков.

Погрешность измерения **портативных рН-метров** с комбинированным электродом типа "Checker", "Hanna", ИТ-1101 и др. согласно паспортным данным, не превышает ± 0.05 ед рН, что справедливо в случае измерения рН растворов, обладающих высокой буферной емкостью. К ним относятся буферные растворы, питьевые, минеральные и технологические воды разного рода с минерализацией свыше $100 \, \text{мг/см}^3$.

Атмосферные осадки – это маломинерализованные растворы с низкой буферной емкостью. По экспериментальным данным погрешность измерений рН таких растворов с использованием портативных приборов с комбинированным электродом, как правило, превышает 20% или ± 0.5 ед pH. Время отклика таких приборов в случае маломинерализованных растворов увеличивается. В результате длительного контакта с электродом изменяются характеристики измеряемого раствора, и суммарная ошибка измерения увеличивается до 20%. Практически чувствительность портативных рН-метров в случае использования их для измерения рН атмосферных осадков Согласно РД 52.04.186-89 (п. 4.5.3) по результатам снижается в 10 и более раз. метрологического исследования суммарная ошибка определения величины рН в атмосферных осадках не должна превышать $\pm 10\%$.

Портативные и карманные кондуктометры по паспортным данным имеют высокое разрешение, что также справедливо только для высокоминерализованных растворов. Из-за низкой чувствительности таких приборов суммарная погрешность измерения величины удельной электрической проводимости атмосферных осадков в случае их использования может значительно превышать 20%.

Согласно РД 52.04.186-89 (п. 4.51) по результатам метрологического исследования определение удельной электрической проводимости должно выполняться с суммарной погрешность не более 20%.

РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ ДАННЫХ О КИСЛОТНОСТИ АТМОСФЕРНЫХ ОСАДКОВ

Атмосферные осадки (AO) обычно всегда имеют немного кислую реакцию среды, поскольку содержащийся в воздухе диоксид углерода (CO₂) вступает в химическую реакцию с дождевой водой, образуя слабую угольную кислоту. При среднем содержании диоксида углерода в атмосфере, равном 0.03%, концентрация ионов водорода в равновесном водном растворе при 20^{-0} С составит $2.5\cdot10^{-6}$ моль/л, а значение pH соответственно будет равно 5.40-5.60. Принято считать, что именно такое равновесное значение pH должны иметь незагрязненные атмосферные осадки в отсутствие других примесей. В то же время в атмосфере кроме диоксида углерода может присутствовать целый ряд как кислотообразующих веществ, так и пылевых частиц, влияющих на кислотность атмосферных осадков. Границей естественного закисления атмосферных осадков считается значение pH равное 5.00 (Израэль, 1989)

Кислотные дожди оказывают вредное воздействие на растения, наземные и водные организмы, усиливают коррозию металлических конструкций и коммуникаций, а также приводят к закислению поверхностных вод и почвенного покрова. Кислотность, измеряемая величиной рН, определяется как в месячных, так и в суточных (единичных) пробах АО. Кислотность относится к неустойчивым параметрам, а ее значение может изменяться в течение хранения пробы (Качественная оценка загрязнения окружающей среды (по данным о химическом составе атмосферных осадков). – П.Ф.Свистов, А.И.Полищук, Н.А.Першина, Труды ГГО, вып. 562, стр.76-94, 2010). Поэтому значения рН, полученные в результате измерения суточных (единичных) проб, являются наиболее информативными.

Сведения о кислотности проб AO рекомендуется регулярно публиковать в обзорах загрязнения окружающей среды. При этом необходимо использовать достоверные данные, которые могут быть получены только при условии соблюдения всех правил отбора и хранения проб AO, а также при правильном измерении рН.

Контроль качества исходных данных наблюдений

Контроль качества исходных данных наблюдений может быть осуществлен в 3 этапа:

1) Отбор проб атмосферных осадков

На первом этапе оцениваются правила отбора проб атмосферных осадков. **Достоверные значения рН могут быть получены только при условии соблюдения всех правил отбора!** Наиболее возможные причины браковки данных по кислотности атмосферных осадков, связанные с отбором проб, представлены в табл.1

Таблица 1 – Возможные причины получения недостоверных величин рН (по методическим материалам и инспекционному контролю)

Причина	Последствия			
Использование не рекомендованных пробоотборников	200000000000000000000000000000000000000			
Нарушение правил эксплуатации и чистоты пробоотборника — мытье с использованием недопустимых моющих средств (соды, порошка)	Защелачивание проб (при отборе в стеклянный пробоотборник, осадкомер Третьякова)			
Открытый пробоотборник в периоды	Повышенное содержание основных ионов			
отсутствия осадков	вследствие сухого осаждения аэрозолей			
Хранение проб осадков в помещении, где	приводит к искажению химического состава			
хранятся химические вещества бытового и	осадков и, следовательно, недостоверным			
производственного характера	значениям рН			

2) Контроль качества аналитических измерений

2.1) применение не рекомендуемых средств измерений

По экспериментальным данным погрешность измерений pH при применении портативных приборов, как правило, превышает 20% или ± 0.5 ед. pH, в то время как согласно PД 52.04.186-89 суммарная ошибка определения величины pH в атмосферных осадках не должна превышать $\pm 10\%$. Таким образом, применение портативных приборов дает лишь приблизительные, а зачастую завышенные значения кислотности (pH) осадков.

2.2) неправильная эксплуатация прибора

Перед началом измерения величины pH необходимо проводить калибровку прибора по буферным точкам. Вследствие того, диапазон изменения pH осадков, как правило, лежит в пределах 4-7 ед., то настоятельно рекомендуется при калибровке использовать точки 4.01 и 6.86 (7.01). Более подробно основные принципы измерения pH в пробах атмосферных осадков представлены в Приложении 4.

3) Оценка непоказательных значений в исходных рядах наблюдений за кислотностью pH осадков

Обычно сомнительными считаются слишком низкие (<4,00) или наоборот слишком высокие (>7,00) значения рН.

В настоящий момент не существует отдельной специально разработанной методики для анализа экстремальных (выделяющихся) значений величин рН. В данном случае анализ экстремальных значений может быть произведен с помощью непараметрических статистических критериев.

Наибольший интерес представляет информация о (об):

1. Изменении величины рН АО за определенный период

В данном случае следует отразить наименьшие и максимально высокие значения рН. (Например, по результатам наблюдений за 2015 год минимальное значение рН выпавших осадков на ст. Калининград составило – 4,30, а максимальное – 7,70).

2. Средних значениях рН за определенный период (месяц, год)

Необходимо учитывать, что $pH=-lg[H^+]$, поэтому вычисление среднего значения производится в несколько этапов:

а) Изначально необходимо перевести величину pH в концентрацию ионов водорода $([H^+])$ по формуле (1):

$$[H_i^+] = 10^{-\text{pH}}, \ \Gamma/\text{дм3}$$
 (1)

При расчете в Excel применяется формула – «СТЕПЕНЬ(10;-рН)»

б) Вычисляют среднюю концентрацию ионов водорода по формуле (2):

$$[H_{cp}] = \frac{\sum_{i=1}^{n} [H_i^+]}{n}, \Gamma/\text{дм3}$$
 (2)

При расчете в Excel применяется формула – «СРЗНАЧ»

в) Рассчитывают среднее значение pH по формуле (3):
$$pH_{cp}$$
= -lg[H_{cp}] (3)

При расчете в Excel необходимо использовать формулу – «-LOG10»

Таблица 2 – Пример вычисления среднего значения pH и сравнения результатов, полученных путем арифметического осреднения и осреднения через концентрацию ионов водорода

№ п/п	Измеренные значения рН	Концентрация ионов водорода, полученная по формуле (1) ($[H^+]$, $r/дм^3$)
1	4,79	1,62181E-05
2	4,51	3,0903E-05
3	4,83	1,47911E-05
4	6,01	9,77237E-07
5	4,38	4,16869E-05
6	5,83	1,47911E-06
pH_{cp}	5,06	4,68

3. Повторяемости разных значений рН единичных проб

При исследовании единичных проб атмосферных осадков диапазон изменения рН, как правило, расширяется: могут встречаться значения меньше 4,00 и больше 7,00 ед.рН, в то время как в отдельных месячных пробах рН изменяется от 4 до 7 при выраженном преобладании значений от 5 до 7 (см. рисунок).

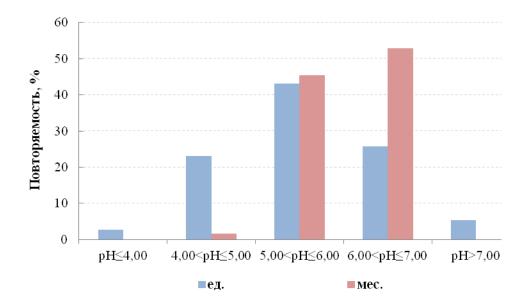


Рисунок – Повторяемость (%) значений рH, рассчитанных по суммарным месячным и единичным пробам осадков на ст. Северодвинск (2006-2015 гг.)

4. Величине влажного выпадения иона водорода

Выпадающие с осадками или образующиеся на поверхности свободные ионы водорода способны оказывать комплекс неблагоприятных эффектов, как в прямой,

так и в косвенной форме. Поэтому рекомендуется рассчитывать величину влажного выпадения иона водорода.

Расчет величины влажного выпадения иона водорода осуществляется по формуле:

$$H = \sum_{i=1}^{n} [H^{+}] \bullet q_{i}$$

где:

H — величина влажного выпадения, r/m^2 (r/km^2) в год; $[H^+]$ — концентрация ионов водорода, r/π ; $[H^+]=10^{-pH}$;

q_і — сумма осадков за месяц, мм;

n — количество месяцев в году с осадками.